暂时未有相关云产品技术能力~
暂无个人介绍
【10月更文挑战第7天】
【10月更文挑战第6天】
【10月更文挑战第4天】
【10月更文挑战第1天】微服务是一种将大型应用分解为小型、独立服务的设计理念,每个服务负责单一业务功能,独立部署、运行,通过轻量级通信机制(如HTTP API或RPC)互联。相比单体应用,微服务提高了部署效率、团队协作效能和系统可用性,但也增加了系统复杂性、通信开销和数据一致性管理的难度。实现微服务架构涉及服务拆分、服务发现、配置管理、服务治理、数据一致性、安全性、监控与日志、持续集成与部署等多个方面。
【8月更文挑战第20天】
【8月更文挑战第18天】
【8月更文挑战第16天】
【8月更文挑战第14天】
【8月更文挑战第12天】
【8月更文挑战第10天】
【8月更文挑战第9天】
【8月更文挑战第5天】
【8月更文挑战第3天】
【8月更文挑战第2天】
【7月更文挑战第19天】
【7月更文挑战第18天】
【7月更文挑战第16天】
【7月更文挑战第13天】
【7月更文挑战第12天】
【7月更文挑战第6天】
【7月更文挑战第5天】
【7月更文挑战第3天】
【7月更文挑战第2天】MongoDB配置服务器存储分片和权限元数据,支持在主节点故障时保持读服务。关键组件,性能影响显著。复制集包含Primary和Secondary,通过oplog实现数据同步,类似MySQL binlog。oplog的幂等性可能导致大量set操作,且大小受限,可能导致从节点需全量同步。读写分离提升效率,主从切换确保高可用。
【7月更文挑战第1天】
【6月更文挑战第21天】
【6月更文挑战第20天】
【6月更文挑战第18天】Redis中的热Key是高访问频率的Key,如QPS高、大带宽使用或CPU密集型操作。热Key可能导致CPU占用过高、访问倾斜、缓存击穿和系统性能下降。爆款商品、热点事件等可引发热Key。检测热Key可借助云服务、`redis-cli hotkeys`、业务层监控或`MONITOR`命令。优化策略包括复制热Key到多分片、采用读写分离,但需权衡代码复杂性和数据一致性。
【6月更文挑战第17天】在面试中讨论Elasticsearch高可用性时,聚焦于分片机制和主从副本,确保数据冗余。Translog作为关键组件,用于数据安全,防止崩溃后丢失。为提升高可用性,实施了额外措施,如限流保护,通过Elasticsearch内置功能或自定义插件监控内存和CPU使用率,当超过阈值时动态限流,以应对突发流量,避免系统崩溃。
【6月更文挑战第15天】Elasticsearch利用Translog确保数据安全,类比MySQL的redo log,它在内存缓冲后记录Translog,每隔5秒持久化磁盘,提供高效且顺序的写入。尽管如此,仍可能最多丢失5秒数据。索引由分片组成,每个分片有主从结构,分布于不同节点以降低故障影响。当主分片失败,主节点会选择新主分片。面试中可讨论公司如何使用Elasticsearch、其性能、索引设计、可用性策略及解决过的挑战。常见问题涉及Elasticsearch的应用场景、问题解决及写入流程。
【6月更文挑战第14天】Redis内置命令如STRLEN、LLEN等用于检测不同类型Key的大小。避免使用DEBUG OBJECT和MEMORY USAGE因高资源消耗。大Key优化包括业务设计避免大Key、数据拆分、更换存储方案、数据压缩和合理清理。清理大Key应选低峰期或分批异步进行,以减少阻塞。使用如HSCAN、SREM等命令避免一次性操作大量数据。
【6月更文挑战第13天】**大Key标准**在不同场景各异,一般string超1MB或容器超10k元素视为大;高并发场景中,string超10KB,容器超5k或整体10MB。**阿里云Redis**中,大Key可能表现为String值5MB,ZSET成员10k,或Hash总值100MB。**大Key影响**包括高读取成本、操作阻塞、存储压力不均。**产生原因**多源于业务设计、动态增长管理和程序错误。**查找大Key**可通过云服务的实时/离线统计,`redis-cli --bigkeys`或使用Redis RDB Tools分析RDB文件。注意,某些特定需求可能需额外工具。
【6月更文挑战第8天】网状模型是层次模型的扩展,允许节点有多重父节点,但导航复杂,需要预知数据库结构。关系模型将数据组织为元组和关系,强调声明式查询,解耦查询语句与执行路径,简化了访问并通过查询优化器提高效率。文档型数据库适合树形结构数据,提供弱模式灵活性,但在Join支持和访问局部性上不如关系型。关系型数据库通过外键和Join处理多对多关系,适合高度关联数据。文档型数据库的模式灵活性体现在schema-on-read,写入时不校验,读取时解析,牺牲性能换取灵活性。适用于不同类型或结构变化的数据场景。
【6月更文挑战第7天】该文探讨数据模型,比较了“多对一”和“多对多”关系。通过使用ID而不是纯文本(如region_id代替"Greater Seattle Area"),可以实现统一、避免歧义、简化修改、支持本地化及优化搜索。在数据库设计中,需权衡冗余和范式。文档型数据库适合一对多但处理多对多复杂,若无Join,需应用程序处理。关系型数据库则通过外键和JOIN处理这些关系。文章还提及文档模型与70年代层次模型的相似性,层次模型以树形结构限制了多对多关系处理。为克服层次模型局限,发展出了关系模型和网状模型。
【6月更文挑战第6天】关系模型是主流数据库模型,以二维表形式展示数据,支持关系算子。分为事务型、分析型和混合型。尽管有其他模型挑战,如网状和层次模型,但关系模型仍占主导。然而,随着大数据增长和NoSQL的出现(如MongoDB、Redis),强调伸缩性、专业化查询和表达力,关系模型的局限性显现。面向对象编程与SQL的不匹配导致“阻抗不匹配”问题,ORM框架缓解但未完全解决。文档模型(如JSON)提供更自然的嵌套结构,适合表示复杂关系,具备模式灵活性和更好的数据局部性。
【6月更文挑战第4天】本文探讨了Twitter面临的一次发推文引发的巨大写入压力问题,指出用户粉丝数分布是决定系统扩展性的关键因素。为解决此问题,Twitter采用混合策略,大部分用户推文扇出至粉丝主页时间线,而少数名人推文则单独处理。性能指标包括吞吐量、响应时间和延迟,其中高百分位响应时间对用户体验至关重要。应对负载的方法分为纵向和横向扩展,以及自动和手动调整。文章强调了可维护性的重要性,包括可操作性、简单性和可演化性,以减轻维护负担和适应变化。此外,良好设计应减少复杂性,提供预测性行为,并支持未来改动。
【6月更文挑战第3天】可扩展性关乎系统应对负载增长的能力,但在产品初期过度设计可能导致失败。理解基本概念以应对可能的负载增长是必要的。衡量负载的关键指标包括日活、请求频率、数据库读写比例等。推特的扩展性挑战在于"扇出",即用户关注网络的广度。两种策略包括拉取(按需查询数据库)和推送(预计算feed流)。推送方法在推特案例中更为有效,因为它减少了高流量时的实时计算压力。
【6月更文挑战第2天】本书探讨现代数据系统,阐述其在信息社会中的关键作用,包括数据库、缓存、搜索引擎、流处理、批处理和消息队列等组成部分。随着技术发展,工具如Kafka、Spark和Redis等多功能组件使得系统设计更为复杂。面对可靠性、可扩展性和可维护性的挑战,书中强调了容错和韧性的重要性,区分了硬件故障、软件错误和人为错误,并提出了应对措施。可靠性关乎用户数据、企业声誉和生存,因此是系统设计的核心考量。
【6月更文挑战第1天】布隆过滤器是一种节省内存的不确定数据结构,用于判断元素是否可能在一个集合中。它由位数组和多个哈希函数组成,能快速插入和查询,但存在误判风险:可能存在假阳性(判断存在但实际不存在),但绝无假阴性(判断不存在则确实不存在)。适用于大规模数据的去重问题,如电话号码判断、安全网站链接检查、黑名单和白名单校验。其工作原理是通过多个哈希函数将元素映射到位数组中,添加时设置相应位置为1,查询时所有位置都为1则可能存在,有0则肯定不存在。由于哈希冲突,可能导致误判,且一旦添加元素无法删除,以避免影响其他元素。
【5月更文挑战第21天】Redis启用多线程后,主线程负责接收事件和命令执行,IO线程处理读写数据。请求处理流程中,主线程接收客户端请求,IO线程读取并解析命令,主线程执行后写回响应。业界普遍认为,除非必要,否则不建议启用多线程模式,因单线程性能已能满足多数需求。公司实际场景中,启用多线程使QPS提升约50%,或选择使用Redis Cluster以提升性能和可用性。
【5月更文挑战第20天】Redis采用单线程模式以避免上下文切换和资源竞争,简化调试,且其性能瓶颈在于网络IO和内存,而非多线程。相比之下,Memcache使用多线程能更好地利用多核CPU,但伴随上下文切换和锁管理的开销。尽管Redis单线程性能不俗,6.0版本引入多线程以提升高并发下的IO处理能力。启用多线程后,Redis结合Reactor和epoll实现并发处理,提高系统性能。
【5月更文挑战第19天】`epoll`、`poll`和`select`是Linux下多路复用IO的三种方式。`select`需要主动调用检查文件描述符,而`epoll`能实现回调,即使不调用`epoll_wait`也能处理就绪事件。`poll`与`select`类似,但支持更多文件描述符。面试时,重点讲解`epoll`的高效性和`Reactor`模式,该模式包括一个分发器和多个处理器,用于处理连接和读写事件。Redis采用单线程模型结合`epoll`的Reactor模式,确保高性能。在Redis 6.0后引入多线程,但基本原理保持不变。
【5月更文挑战第18天】`epoll`包含红黑树和就绪列表,用于高效管理文件描述符。关键系统调用有3个:`epoll_create()`创建epoll结构,`epoll_ctl()`添加/删除/修改文件描述符,`epoll_wait()`获取就绪文件描述符。`epoll_wait()`可设置超时时间(-1阻塞,0立即返回,正数等待指定时间)。当文件描述符满足条件(如数据到达)时,通过中断机制(如网卡或时钟中断)更新就绪列表,唤醒等待的进程。
【5月更文挑战第17天】Redis常被称为单线程,但实际上其在处理命令时采用单线程,但在6.0后IO变为多线程。持久化和数据同步等任务由额外线程处理,因此严格来说Redis是多线程的。面试时需理解Redis的IO模型,如epoll和Reactor模式,以及其内存操作带来的高性能。Redis使用epoll进行高效文件描述符管理,实现高性能的网络IO。在讨论Redis与Memcached的线程模型差异时,应强调Redis的单线程模型如何通过内存操作和高效IO实现高性能。
【5月更文挑战第16天】该方案提出了解决Redis缓存穿透、击穿和雪崩问题的策略。通过使用两个或多个互为备份的Redis集群,确保在单个集群故障时,另一个可以接管。在故障发生时,业务会与备用集群保持心跳检测,并根据业务重要性分批转移流量,逐步增加对备用集群的依赖,同时监控系统稳定性。对于成本敏感的小型公司,可以采用低成本的单机或小规模自建Redis备份。此方案强调渐进式流量转移,以保护系统免受突然压力冲击。
【5月更文挑战第15天】本文介绍了如何解决缓存击穿和雪崩问题。对于缓存击穿,采用singleflight模式,确保即使热点数据导致大量请求未命中缓存,也只允许一个请求真正查询数据,其他请求等待其结果。对于缓存雪崩,解决方案是在设置过期时间时添加随机偏移量,避免所有数据同时过期。偏移量应与过期时间成正比。此外,限流也是一个重要策略,可以在服务层和数据库层实施,以限制请求流量,保护数据库免受高并发压力。
【5月更文挑战第14天】解决缓存穿透问题有两种策略。一是回写特殊值,当数据不存在时,在缓存中存储特殊值以标记,避免下次重复查询数据库。但此方法可能被恶意请求利用,浪费内存。二是使用布隆过滤器,预先判断数据是否存在,减少无效数据库查询。布隆过滤器虽有假阳性可能,但概率低,可接受。此外,可先查缓存再查布隆过滤器,优化正常请求的效率。两种方式各有优劣,实际应用需根据场景选择。
【5月更文挑战第12天】客户端容错机制确保在服务端或注册中心故障时仍能正确发送请求。当服务端崩溃,由于延迟,客户端一段时间内仍会尝试发送请求。客户端应实施 failover 策略,即检测到调用失败后,切换到其他节点重试,并将故障节点从列表移除。延时通常等于服务端与注册中心心跳间隔加通知时间。若网络问题导致客户端无法访问服务端,客户端应发送心跳以检测服务端状态,成功则恢复,连续失败则视为崩溃。若客户端无法连接注册中心,它应使用本地缓存并考虑退出。
【5月更文挑战第11天】Refresh Ahead模式通过CDC异步刷新缓存,但面临缓存一致性问题,可借鉴Write Back策略解决。SingleFlight限制并发加载,减少数据库压力,适合热点数据。删除缓存模式在更新数据库后删除缓存,一致性问题源于读写线程冲突。延迟双删模式两次删除,理论上减少不一致,但可能降低缓存命中率。选用模式需权衡优劣,延迟双删在低并发下较优。装饰器模式可用于实现多种缓存模式,无侵入地增强现有缓存系统。
【5月更文挑战第6天】消息队列的核心特性是异步、削峰和解耦,常用于日志处理和消息通讯,实现事件驱动架构。面试中可能涉及问题包括公司是否使用消息队列、应用场景、优缺点以及延时队列、秒杀架构等。秒杀场景下,消息队列将校验和库存扣减(轻量级)与订单创建(重量级)分隔,减轻系统压力,依赖于Redis性能。使用消息队列能解决高并发、复杂流程同步等问题。
【5月更文挑战第10天】`Write Through`是一种缓存策略,写操作仅需写入缓存,缓存负责更新数据库。异步版本可能丢失数据,而同步变种先写数据库再异步刷新缓存,减少丢数据风险。`Write Back`模式数据先写入缓存,过期时才写入数据库,可能导致数据丢失,但若使用Redis并确保高可用,可部分解决一致性问题。在特定条件下,如使用SETNX命令,能缓解一致性挑战。