暂时未有相关云产品技术能力~
暂无个人介绍
在探索人工智能的深海中,提示词(Prompt)是引导大模型输出的灯塔。本文希望通过对自身所学所思进行总结,解析提示词如何塑造AI的响应,揭示其背后的机制。
本文介绍了Serverless高可用架构方案,当企业面对日益增长的用户访问量和复杂的业务需求时如何实现更高的灵活性、更低的成本和更强的稳定性。
作者遴选了2024年度典型的RAG系统和论文(含AI注解、来源、摘要信息),并于文末附上RAG综述和测试基准材料,希望阅读完本文可以帮助大家速通RAG。
本文主要叙述如何运用云数据库 Tair 构建缓存,助力应用提速、优化性能。
文章探讨了为什么大规模集群中的可观测性服务会产生大量API请求、API服务器为何对DNS解析至关重要以及故障恢复过程为何缓慢的原因。
本文介绍了一套利用阿里云E-MapReduce StarRocks版进行游戏玩家画像和行为分析的完整流程,旨在帮助开发者构建高性能、低成本的游戏数据分析平台。
11月7日上午,支付网关下游HSF请求出现失败,一台额度中心服务器异常。经排查,发现是B算法在处理47笔订单时导致内存溢出(OOM)。该算法用于计算用户可用额度下的最优订单组合,但因递归创建链表占用过多内存而崩溃。为解决此问题,团队紧急将用户流量切换至A算法,并对B算法进行优化。通过分治+回溯和背包算法的对比实验,最终选择根据订单数和金额阈值动态选择算法,确保系统稳定性和性能。此次事件提醒我们,在编程中需充分考虑边界情况并进行性能测试,避免极端情况对系统的影响。
本文介绍了如何利用阿里云的通义万相AIGC技术,在无需编写代码的情况下,通过简单的文字描述或涂鸦生成独一无二的圣诞树图像。借助阿里云的基础设施和云服务(如VPC、ECS、OSS等),用户可以快速部署并体验这一功能。具体步骤包括开通百炼服务、创建API Key、一键部署资源栈,并通过浏览器访问示例应用,输入提示词或涂鸦,最终生成精美的圣诞树图像。整个过程简单快捷,适合广告营销、教育和游戏开发等多个领域,提升内容的视觉表现和用户体验。
本文讲解了阿里云编译器团队和可观测团队为了实现Go应用监控选择编译时插桩的原因,同时还介绍了其他的监控方案以及它们的优缺点。
本文从C++11并发编程中的关键概念——内存模型与原子类型入手,结合详尽的代码示例,抽丝剥茧地介绍了如何实现无锁化并发的性能优化。
本文为《事件CPU开销压降》揭榜报告,旨在解决风控系统间信息传递时事件体持续膨胀导致的序列化/反序列化CPU消耗过高的问题。
本文详细介绍了将自建数据库迁移至阿里云RDS的全过程,涵盖WordPress网站安装、数据库迁移配置及验证等步骤。通过DTS数据传输服务,实现库表结构、全量和增量数据的无缝迁移,确保业务连续性和数据一致性。方案具备零成本维护、高可用性(最高99.99%)、性能优化及全面的数据安全保障等核心优势。此外,提供了详细的图文教程,帮助用户快速上手并完成迁移操作,确保业务稳定运行。点击文末“阅读原文”了解更多详情及参与活动赢取精美礼品。
本文将以一个经典的 RAG(检索增强生成)知识问答系统为例,详细介绍从智能体设计到最终应用部署的全流程。
本文主要讲述 Redis 是如何监听客户端发出的set、get等命令的。
本文将从概念、设计、实现和适用场景等多个维度介绍Redis Stream在交通模块的应用。
一次项目包含非常多的流程,有需求拆解,业务建模,项目管理,风险识别,代码模块设计等等,如果我们在每次项目中,都将精力大量放在这些过程的思考上面,那我们剩余的,放在业务上思考的精力和时间就会大大减少;这也是为什么我们要 总结经验/方法论/范式 的原因;这篇文章旨在建立代码模块设计上的思路,给出了两种非常常用的设计范式,减少未来在这一块的精力开销。
本书以“人类是如何思考和学习的”为线索,阐述了大脑关于学习的若干项基本运作原理,揭示了故事、情感、记忆、背景知识、练习在构建知识和创造持久学习经验中的重要性。
作者记录了故障发生时的排查思路,再对问题进行详细描述并分析根本原因,最终找到解决方案。
本文主要讲述在处理票据信息结构化提取任务时,如何结合OCR(光学字符识别)技术和多模态大模型Qwen-VL来提高票据信息提取的准确性和效率。
上一篇文章《你知道Java类是如何被加载的吗?》分析了HotSpot是如何加载Java类的,本文再来分析下Hotspot又是如何解析、创建和链接类方法的。
本文简单讲述作者对于“怎么尽可能快地上手一个新业务/项目?”这个问题的个人理解。
本文将深入探讨Linux系统中的动态链接库机制,这其中包括但不限于全局符号介入、延迟绑定以及地址无关代码等内容。
在大数据和大模型的加持下,现代数据技术释放了巨大的技术红利,通过多种数据范式解除了数据的桎梏,使得应用程序达到了“心无桎梏,身无藩篱”的自在境界,那么现代应用有哪些数据范式呢?这正是本文尝试回答的问题。
本文记录了一次Java进程CPU占用率过高的问题和排查思路。
本文章基于业务实践,总结有关客服质检场景的解决方案和处理经验,为相似场景提供可行的借鉴方法。
本文介绍了图像生成技术在AIGC领域的发展历程、关键技术和当前趋势,以及这些技术如何应用于新能源汽车行业的车联网服务中。
一个有趣的现象引起了作者的注意:当启用行首正则表达式处理多行日志时,采集性能出现下降。究竟是什么因素导致了这种现象?本文将探索Logtail多行日志采集性能提升的秘密。
本文详细记录了作者在处理HSF调用异常问题的过程中,从初步怀疑死锁到最终发现并解决活锁问题的全过程。
阿里云开发者社区入选 2024 中国技术品牌影响力企业榜。
为了高效地发现、定位和解决预发问题,闲鱼团队研发了一套异常日志问题自动追踪-定位-分发机制。这套机制通过自动化手段,实现了异常日志的定时扫描、精准定位和自动分发,显著降低了开发和测试的成本,提高了问题解决的效率。
本文将深入探讨 PolarDB-X 列存查询引擎的分层缓存解决方案,以及其在优化 ORC 列存查询性能中的关键作用。
本文基于实际场景,分享了作为开发者提高大模型响应性能的四个实用方法。
本文作者将介绍女娲对社区 ZooKeeper 在分布式读写锁实践细节上的思考,希望帮助大家理解分布式读写锁背后的原理。
阅读这个文章可能的收获:理解AI、看懂模型和代码、能够自己搭建模型用于实际任务。
本文将从两个常见的大模型翻车问题入手解析这些问题背后体现的大模型技术原理,并解释了为什么会导致这些问题,接着我们利用CoT(思维链)方法解决这些问题并基于上述原理试图剖析CoT方法起作用的可能原因,最后提出【理由先行】风格这一简单有效的Prompt Trick。
本文围绕阿里云CSI(Container Storage Interface)镜像构建的实际案例,探讨了一系列优化容器镜像的最佳实践。
这篇文章旨在提供技术深度和实践指南,帮助开发者理解并应用这项创新技术来提高Golang应用的监控与服务治理能力。在接下来的部分,我们将通过一些实际案例,进一步展示如何在不同场景中应用这项技术,提供更多实践启示。
本文作者基于自身在RAG技术领域长达半年的实践经验,分享了从初识RAG的潜力到面对实际应用挑战的心路历程,以及如何通过一系列优化措施逐步解决这些挑战的过程。
CLR集成为SQL Server提供了强大的扩展能力,突破了T-SQL的限制,极大地拓展了SQL 的应用场景,如:复杂字符串处理、高性能计算、图像处理、机器学习集成、自定义加密解密等,使开发人员能够利用 .NET Framework的丰富功能来处理复杂的数据库任务。
本文旨在帮助大家深入理解技术、架构和团队领导力的本质,从而获得持续成长的方法。欢迎在文末留言,你觉得架构师需要具备的核心能力是什么?
本文主要记录了自己通过查阅相关资料,一步步排查问题,最后通过优化Docerfile文件将docker镜像构建从十几分钟降低到1分钟左右,效率提高了10倍左右。
商品标题中关键词的好坏是商品能否被主搜检索到的关键因素,使用大模型自动优化标题成为【AI经营】中的核心能力之一,本文讲述大模型如何帮助商家优化商品素材,提升商品竞争力。
千问团队开源了强大的 Qwen2.5-Coder 系列模型,涵盖 0.5B 到 32B 六种尺寸,旨在推动开放代码模型的发展。该系列模型在代码生成、修复和推理等方面表现出色,支持多种编程语言,并在多个基准测试中达到 SOTA 水平。此外,Qwen2.5-Coder 还提供了丰富的应用场景,如代码助手、Artifacts 和 Interpreter,满足不同开发者的需求。
怎么才能在Java中优雅的操纵时间呢,作者整理了相关的概念和工具类,希望帮助大家在代码开发的过程中对时间的使用更加优雅。
本文深入探讨了JavaScript对象在V8引擎中的内存管理和优化策略,特别是在处理大规模数据时可能出现的性能和内存问题。
本文旨在帮助开发者快速掌握并应用 Spring AI Alibaba,提升基于 Java 的大模型应用开发效率和安全性。
本篇将主要介绍json序列化的详细流程。本文阅读的FastJSON源码版本为2.0.31。
本文中,阿里云智能集团开发工程师李泽政以 Alinux 为操作环境,讲解模块相比传统头文件有哪些优势,并通过若干个例子,学习如何组织一个 C++ 模块工程并使用模块封装第三方库或是改造现有的项目。
文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。
一个特殊请求引发服务器内存用量暴涨进而导致进程 OOM 的惨案。
发表了文章
2025-11-27
发表了文章
2025-11-27
发表了文章
2025-11-27
发表了文章
2025-11-27
发表了文章
2025-11-27
发表了文章
2025-11-27
发表了文章
2025-11-27
发表了文章
2025-11-20
发表了文章
2025-11-20
发表了文章
2025-11-20
发表了文章
2025-11-20
发表了文章
2025-11-20
发表了文章
2025-11-14
发表了文章
2025-11-13
发表了文章
2025-11-13
发表了文章
2025-11-06
发表了文章
2025-11-06
发表了文章
2025-11-06
发表了文章
2025-10-30
发表了文章
2025-10-30
提交了问题
2024-03-14
提交了问题
2024-03-08
提交了问题
2024-02-21
提交了问题
2024-02-05
提交了问题
2024-01-18
提交了问题
2024-01-17
提交了问题
2023-12-28
提交了问题
2023-12-22
提交了问题
2023-12-14
提交了问题
2023-12-07
提交了问题
2023-12-01