二级缓存架构极致提升系统性能

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 本文详细阐述了如何通过二级缓存架构设计提升高并发下的系统性能。

前言

随着k8s成为用云新界面,容器成为众多用户“弹性”的利器,因此容器的创建天生具备高并发特性。


高并发、大数据量下,为了提供更好的容器弹性体验,笔者通过二级缓存的设计,成功优化了系统性能、资源消耗、系统容量。


但持续压榨性能的道路是曲折的。各种缓存方案需要考虑非常多因素,包括缓存的多级架构、预热、击穿、刷新、运维等。


让我们先看看系统性能、资源消耗、系统容量,到底优化了多少?然后详细介绍带来性能提升的二级缓存架构,以及各种缓存方案的设计、比较、落地。


优化结果

笔者对系统进行多次压测,观察了二级缓存等优化手段上线前后,高QPS下的资源消耗、RT和系统容量。


1、资源消耗大幅下降

可以看到,上线了二级缓存等优化手段后,相同QPS下,CPU使用率大幅下降。

image.png

2、RT和系统容量优化

由于计算资源消耗的下降,同QPS下的平均RT也大幅下降。此外我们发现,优化前,随着QPS不断提升,RT明显变慢、变慢幅度很大,优化后,RT变慢的幅度明显减缓。这意味着,系统容量也更加深不可测了。


系统瓶颈在哪?

持续压榨性能,前提是知道瓶颈在哪。笔者怎么定位瓶颈的呢?-> cpuProfile火焰图。


高QPS下,分析了系统cpu火焰图,发现50%+的CPU瓶颈在大量的业务数据处理,主要两块:


1、从redis取业务pojoList时的fastjson array反序列化背景是和redis交互的数据量特别大笔者对缓存value进行过压缩,在解压缩后的string转为List<Pojo>的过程,本质用时间换了空间。


2、调用redis获取数据后的alibaba.cachejson的POJO解析。


在高并发、大数据量的业务背景下,这些过程的耗时被笛卡尔积地放大。


既然分布式缓存CPU资源消耗是瓶颈,那么引入本地缓存,就能解这个问题。另外,本地缓存还能提供服务容灾能力。


数据属性和缓存选型


数据属性

设计缓存方案前,先分析业务数据属性:

  • 符合key -> value的数据模式
  • 读多写少
  • 变更频率低
  • 数据一致性要求不高

简直就是缓存的绝佳使用场景!那么用本地缓存,还是分布式缓存呢?还是二级缓存?


本地/分布式缓存特性

基于业务属性,我们来match本地/分布式缓存特性:


本地缓存


  • 优点
  • 访问速度快;
  • 减少网络开销:不存在redis流量瓶颈(之前由于数据valueList量过大,导致redis网络流量超过redis实例SLA,还做过一次gzip压缩);
  • 缺点
  • 可用性相对差:如果应用实例宕机/重启, 缓存数据会丢失;
  • 资源限制:受限于单机内存大小,不适合大规模数据缓存(相对内存大小来说,本业务数据量还是较小,也是相对静态数据,在内存还是妥妥可存的核心业务数据);


分布式缓存


  • 优点
  • 高可用:数据共享,不会因为业务机器重启丢失;
  • 大容量:可以水平扩展增加存储容量;
  • 缺点
  • 序列化cpu瓶颈(本系统大数据量+高调用量下尤其突出);
  • 网络开销:存在redis流量瓶颈(本系统大数据量+高调用量下尤其突出);


本地+分布式二级缓存


  • 优点
  • 结合两者优势,层次化加速;
  • 缺点
  • 对本系统代码侵入较大,实现较复杂;
  • 资源消耗:额外的缓存层级会占用更多计算和存储资源;


缓存方案比较

系统现状

image.png

结合业务场景和系统现状,提出以下三种方案。对多级架构、预热、击穿、刷新、运维多个角度分析。

方案1:本地缓存+guava refreshAfterWrite

image.png

1、架构

仅本地缓存。根据业务场景设置失效时间。


2、cache miss处理、刷新

使用Guava cache原生的refreshAfterWrite+异步reLoader机制,进行缓存的刷新,保证时效性。当对应key距离写入时间点存活超过TTL后,guava会自动执行我们在reLoader中写的业务逻辑,从提供实时数据的系统自动拉取最新的<key, value>,更新缓存值。


在本业务场景下,缓存的key&value设计有两种方案。


a. <key, value>。由于guava cache loader只能by key更新,所以,如果在单地域有N台机器,每个机器都查M个key,在缓存刷新时最大有M*N个查询请求打到提供实时数据的系统,无法使用批量查询能力,而M数量非常大,对下游压力会翻倍。


b. <"all_data"(hardCode), Map<key, value>>。这样可以使用到批量查询的能力,但是当某些<key, value>在本地缓存没有时,guava的loader就无法识别cache miss并从下游系统捞数据了。


3、预热

启动时全量预热。


4、运维

暴露dubbo/http服务,by host运维;或者重启机器。


因此:

  • 优点
  • 无redis相关cpu资源、网络资源损耗;
  • 直接使用了Guava cache原生的loader机制;
  • 缺点
  • 对下游压力翻倍;

由于对下游压力太大,放弃此方案。

方案2:二级缓存+刷新job

image.png

1、架构

本地+分布式二级缓存。本地缓存失效时间无穷大。


2、预热

启动时全量预热。


3、cache miss处理

不用guava cache loader。cache miss时业务上调用分布式缓存,再miss则调用下游服务。


4、刷新

使用spring单机job定时全量刷新缓存,保证一定时效性(数据变动频率很低,所以job频率设低即可)。但是由于本系统在间接引入quartz分布式定时任务框架时,没有直接支持单机job(quartz本身是支持的),所以需要额外使用spring单机job框架,会导致系统任务管理框架不统一。


5、运维

本地缓存:暴露dubbo/http服务,by host运维;或者重启机器。

分布式缓存:通过redis服务管理。


因此:

  • 优点
  • 本地缓存命中率很高,基本不会发生redis瓶颈。
  • 缺点
  • 业务自行load+write back。
  • 使用了新的定时任务框架(for单机),系统任务管理框架不统一。


方案3:二级缓存+guava expireAfterAccess

image.png

1、架构

本地+分布式二级缓存。根据业务设定本地缓存失效时间(expireAfterAccess)。


2、预热

启动时全量预热。这会导致应用重启,然后缓存预热后,部分本地缓存TTL可能批量到期失效,后面请求过来后可能直接大量击穿到下游服务,这是典型的缓存雪崩场景!

而且,当本地缓存雪崩,或者miss时,请求即使hit分布式缓存,也会导致redis相关序列化cpu瓶颈,会导致偶发的系统性能长尾。


3、cache miss处理

不用guava cache loader。cache miss时业务上调用分布式缓存,再miss则调用下游服务。


4、刷新

无刷新job。


5、运维

本地缓存:暴露dubbo/http服务,by host运维;或者重启机器。

分布式缓存:通过redis服务管理。


因此:

  • 优点
  • 不需要额外刷新job;
  • 不强依赖运维方案(因为本地和分布式缓存都有失效时间);
  • 缺点
  • 存在缓存雪崩风险;
  • redis相关序列化造成cpu瓶颈发生概率仍然较大;


落地方案

根据上述优缺点、改造量评估, 基本按照方案2来执行。


1、架构

本地+分布式二级缓存,以本地缓存为主,保证本地缓存极高命中率。


2、CacheMiss处理

业务自行处理,和现有链路保持一致,localCache -> redis -> dubbo,这样能够快速上线。


3、预热

应用启动,提供服务前预热。


4、刷新

基于SpringCronJob。


5、运维

per host运维,提供dubbo/http服务。

除此之外,对guava cache还进行了包装,各个业务场景的各种local cache,统一存储在一个Map容器Map<${prefix}, Cache<${key}, ${value}>>里,对现有的本地缓存也进行了重构,通过缓存包装层统一交互统一管理,增加可复用性和代码简洁度。


写在最后

本文对多种缓存方案的架构、预热、击穿、刷新、运维等进行了比较分析,最终进行工程落地,完成了容器场景高并发、大数据量下的系统性能极致提升。后续的优化点有:


1、其他系统瓶颈:压测pattern较单一,可能因为缓存掩盖其他依赖服务的性能瓶颈。未来会用更全面的压测pattern继续压榨系统性能。

2、批量刷新能力:对于方案1的批量刷新能力缺陷,caffeine其实有相关feature,见Bulk refresh这个issue。

3、运维方案:缺乏集群批量invalid能力,待建设。

4、架构统一:分布式和单机job使用同一个job管理框架。


这个方案的落地,特别要感谢团队同学的宝贵建议,是大家多次对技术方案“battle”后的结果。虽然笔者不是哈工大的,但借用哈工大的校训来总结,reviewers的意见、对技术的追求,如同追求“规格严格,功夫到家”。Creating great software is crafting a piece of art. 继续加油!





来源  |  阿里云开发者公众号
作者  |
 木将


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
21天前
|
消息中间件 缓存 NoSQL
Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。
【10月更文挑战第4天】Redis 是一个高性能的键值对存储系统,常用于缓存、消息队列和会话管理等场景。随着数据增长,有时需要将 Redis 数据导出以进行分析、备份或迁移。本文详细介绍几种导出方法:1)使用 Redis 命令与重定向;2)利用 Redis 的 RDB 和 AOF 持久化功能;3)借助第三方工具如 `redis-dump`。每种方法均附有示例代码,帮助你轻松完成数据导出任务。无论数据量大小,总有一款适合你。
56 6
|
11天前
|
监控 持续交付 API
深入理解微服务架构:构建高效、可扩展的系统
【10月更文挑战第14天】深入理解微服务架构:构建高效、可扩展的系统
47 0
|
4天前
|
缓存 Java Shell
Android 系统缓存扫描与清理方法分析
Android 系统缓存从原理探索到实现。
28 15
Android 系统缓存扫描与清理方法分析
|
4天前
|
存储 数据管理 调度
HarmonyOS架构理解:揭开鸿蒙系统的神秘面纱
【10月更文挑战第21天】华为的鸿蒙系统(HarmonyOS)以其独特的分布式架构备受关注。该架构包括分布式软总线、分布式数据管理和分布式任务调度。分布式软总线实现设备间的无缝连接;分布式数据管理支持跨设备数据共享;分布式任务调度则实现跨设备任务协同。这些特性为开发者提供了强大的工具,助力智能设备的未来发展。
25 1
|
14天前
|
存储 监控 负载均衡
|
22天前
|
传感器 存储 架构师
构建基于 IoT 的废物管理系统:软件架构师指南
构建基于 IoT 的废物管理系统:软件架构师指南
58 9
|
20天前
|
缓存 JavaScript 前端开发
Vue 3的事件监听缓存如何优化性能?
【10月更文挑战第5天】随着前端应用复杂度的增加,性能优化变得至关重要。Vue 3 通过引入事件监听缓存等新特性提升了应用性能。本文通过具体示例介绍这一特性,解释其工作原理及如何利用它优化性能。与 Vue 2 相比,Vue 3 可在首次渲染时注册事件监听器并在后续渲染时重用,避免重复注册导致的资源浪费和潜在内存泄漏问题。通过使用 `watchEffect` 或 `watch` 监听状态变化并更新监听器,进一步提升应用性能。事件监听缓存有助于减少浏览器负担,特别在大型应用中效果显著,使应用更加流畅和响应迅速。
46 1
|
24天前
|
存储 安全 开发工具
百度公共IM系统的Andriod端IM SDK组件架构设计与技术实现
本文主要介绍了百度公共IM系统的Andriod端IM SDK的建设背景、IM SDK主要结构和工作流程以及建设过程遇到的问题和解决方案。
39 3
|
27天前
|
安全 数据安全/隐私保护 UED
优化用户体验:前后端分离架构下Python WebSocket实时通信的性能考量
在当今互联网技术的迅猛发展中,前后端分离架构已然成为主流趋势,它不仅提升了开发效率,也优化了用户体验。然而,在这种架构模式下,如何实现高效的实时通信,特别是利用WebSocket协议,成为了提升用户体验的关键。本文将探讨在前后端分离架构中,使用Python进行WebSocket实时通信时的性能考量,以及与传统轮询方式的比较。
55 2
|
2月前
|
监控 Android开发 iOS开发
深入探索安卓与iOS的系统架构差异:理解两大移动平台的技术根基在移动技术日新月异的今天,安卓和iOS作为市场上最为流行的两个操作系统,各自拥有独特的技术特性和庞大的用户基础。本文将深入探讨这两个平台的系统架构差异,揭示它们如何支撑起各自的生态系统,并影响着全球数亿用户的使用体验。
本文通过对比分析安卓和iOS的系统架构,揭示了这两个平台在设计理念、安全性、用户体验和技术生态上的根本区别。不同于常规的技术综述,本文以深入浅出的方式,带领读者理解这些差异是如何影响应用开发、用户选择和市场趋势的。通过梳理历史脉络和未来展望,本文旨在为开发者、用户以及行业分析师提供有价值的见解,帮助大家更好地把握移动技术发展的脉络。
66 6