公益是一辈子的事, I am digoal, just do it. 阿里云数据库团队, 擅长PolarDB, PostgreSQL, DuckDB, ADB等, 长期致力于推动开源数据库技术、生态在中国的发展与开源产业人才培养. 曾荣获阿里巴巴麒麟布道师称号、2018届OSCAR开源尖峰人物.
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过duckdb_fdw 支持 parquet 列存...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 postgresql_hll 实现高效率 UV...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过pg_similarity实现17种文本相似搜索...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用PostGIS 数据寻龙点穴(空间聚集分析)-...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、...
背景PolarDB 开源数据库支持云原生存算分离分布式架构, 一份存储支持多个计算节点, 目前是一写多读的架构. 内核已经很强大了, 怎么实现业务透明的读写分离, 还缺一个连接池, pgcat是不错的选择.pgcat支持连接池、sharding、读写负载均衡等, 更多功能请参考其官网https://...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB结合madlib, 让PolarDB具备机器学习功能.mad...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB结合jieba分词, 实现高效率的中文分词以及中文分词搜索....
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 parray_gin 实现高效率 数组、JS...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 vrpRouting 解决 快递、出行、餐饮配...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理,PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出,将数据变成生产力。本文将介绍PolarDB 开源版 轨迹应用实践,例如:出行、配送、快递等业务的调度快递员...
用户画像在市场营销的应用重建中非常常见,已经不是什么新鲜的东西,比较流行的解决方案是给用户贴标签,根据标签的组合,圈出需要的用户。通常画像系统会用到宽表,以及分布式的系统。宽表的作用是存储标签,例如每列代表一个标签。但实际上这种设计不一定是最优或唯一的设计,本文将以PostgreSQL数据库为基础,给大家讲解一下更加另类的设计思路,并且看看效率如何。
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍使用 PolarDB 开源版 bloom filter index 实现任...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力。本文将介绍使用 PolarDB 开源版 smlar 插件进行高效率相似文本搜索、自助...
背景PolarDB 的云原生存算分离架构,,具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理;;PolarDB与计算算法结合,,将实现双剑合璧,推动业务数据的价值产出,将数据变成生产力。本文将介绍使用 PolarDB 开源版 部署 PostGIS 支撑时空轨迹|地理信息|路...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍使用 PolarDB 开源版 部署 pgrouting 支撑出行、快递、配...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB开源版通过orafce支持Oracle兼容性 .测试环境为m...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB开源版通过roaringbitmap支持用户画像等标签操作场...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 pg_trgm GIN 索引实现高效率lik...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 rum 实现高效率搜索和高效率排序的解决方案...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过pg_rational插件支持Stern-Bro...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的 价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版通过 brin 实现千分之一的存储空间, 高效率检...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用PostGIS 以及泰森多边形 解决 "零售、...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 使用pgpool-II实现透明读写分离.pgpoo...
背景世界是确定的吗? 不就好像我们拍照, 同一个相机, 同一个地点, 同一个时间连拍几张, 结果都不一样. 更不用说时间地点不一样了.真正确定的数据并不多, 世界充满的是不确定的数据.例如人脸识别, 存在数据库中的数据可能是曾经的照片, 但是你去比对人脸时是实时的, 角度、化妆、发型都可能不一样.未...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB结合图式算法, 实现高效率的刑侦、社交、风控、族谱、推荐等业...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍使用 PolarDB 开源版高效率解决用户画像、实时精准营销类业务需求测试...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍使用 PolarDB 开源版 和 imgsmlr 存储图像特征值以及快速的...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍PolarDB 开源版 通过rdkit 支撑生物、化学分子结构数据存储与计...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理;PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力。本文将介绍PolarDB 开源版 通过 pgpointcloud 实现高效孪生数据存储...
背景PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.本文将介绍使用 PolarDB 开源版 部署 pgpointcloud 支撑激光点云...
传统数据库不支持图像类型, 图像相似计算函数, 图像相似计算操作服, 相似排序操作符. 所以遇到类似的需求, 需要自行编写应用来解决. PG|PolarDB 通过imgsmlr插件, 可以将图像转换为向量特征值, 使用相似距离计算函数得到相似值, 使用索引加速相似度排序, 快速获得相似图片, 实现以图搜图. 也可以通过pgvector插件来存储图片向量特征值, 结合大模型服务(抠图、图像向量转换), 可以实现从图像转换、基于图像的相似向量检索全流程能力.
在上一个实验《沉浸式学习PostgreSQL|PolarDB 19: 体验最流行的开源企业ERP软件 odoo》 中, 学习了如何部署odoo和polardb|pg. 由于ODOO是非常复杂的ERP软件, 对于关系数据库的挑战也非常大, 所以通过odoo业务可以更快速提升同学的数据库优化能力, 发现业务对数据库的使用问题(如索引、事务对锁的运用逻辑问题), 数据库的代码缺陷, 参数或环境配置问题, 系统瓶颈等.
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
本文所涉及的实验体验的就是怎么建设AI的外脑?向量数据库的核心价值:AI外脑
新生产力工具AI会催生下一级人类文明跃迁吗? 数据库进化出了哪些与AI相结合的能力? AI加持后的数据库应用场景有哪些变化?
本文将带领大家来体验一下如何将“千问大模型+文本向量化模型”植入到PG|PolarDB中, 让数据库具备AI能力.
本篇文章目标学习如何快速在任意字段组合条件输入搜索到满足条件的数据.
本文的目的是帮助你了解如何设计轨迹表, 如何高性能的写入、查询、分析轨迹数据.
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
本文主要教大家怎么用好数据库, 而不是怎么运维管理数据库、怎么开发数据库内核.
物联网场景, 通常有大量的传感器(例如水质监控、气象监测、新能源汽车上的大量传感器)不断探测最新数据并上报到数据库. 监控系统, 通常也会有采集程序不断的读取被监控指标(例如CPU、网络数据包转发、磁盘的IOPS和BW占用情况、内存的使用率等等), 同时将监控数据上报到数据库. 应用日志、用户行为日志, 也就有同样的特征, 不断产生并上报到数据库. 以上数据具有时序特征, 对数据库的关键能力要求如下: 数据高速写入 高速按时间区间读取和分析, 目的是发现异常, 分析规律. 尽量节省存储空间
业务场景1 介绍: 社交、刑侦等业务, 关系图谱搜索 - 营销、分销、流量变现、分佣、引爆流行、裂变式传播、家谱、选课、社交、人才库、刑侦、农产品溯源、药品溯源 图式搜索是PolarDB | PostgreSQL在(包括流计算、全文检索、图式搜索、K-V存储、图像搜索、指纹搜索、空间数据、时序数据、推荐等)诸多特性中的一个。 采用CTE语法,可以很方便的实现图式搜索(N度搜索、最短路径、点、边属性等)。 其中图式搜索中的:层级深度,是否循环,路径,都是可表述的。
越来越多的企业和个人希望能够利用LLM和生成式人工智能来构建专注于其特定领域的具备AI能力的产品。目前,大语言模型在处理通用问题方面表现较好,但由于训练语料和大模型的生成限制,对于垂直专业领域,则会存在知识深度和时效性不足的问题。在信息时代,由于企业的知识库更新频率越来越高,并且企业所拥有的垂直领域知识库(例如文档、图像、音视频等)往往是未公开或不可公开的。因此,对于企业而言,如果想在大语言模型的基础上构建属于特定垂直领域的AI产品,就需要不断将自身的知识库输入到大语言模型中进行训练。
1、在电商业务中, 用户浏览商品的行为会构成一组用户在某个时间段的特征, 这个特征可以用向量来表达(多维浮点数组), 同时商品、店铺也可以用向量来表达它的特征. 那么为了提升用户的浏览体验(快速找到用户想要购买的商品), 可以根据用户向量在商品和店铺向量中进行相似度匹配搜索. 按相似度来推荐商品和店铺给用户. 2、在短视频业务中, 用户浏览视频的行为, 构成了这个用户在某个时间段的兴趣特征, 这个特征可以用向量来表达(多维浮点数组), 同时短视频也可以用向量来表达它的特征. 那么为了提升用户的观感体验(推荐他想看的视频), 可以在短视频向量中进行与用户特征向量的相似度搜索.
在移动社交、多媒体、内容分发业务场景中, 如果用户要交互的内容都在中心网络(假设深圳), 现在用户流动非常频繁, 当用户从深圳出差到北京, 因为网络延迟急剧增加, 他的访问体验就会变得非常差. 网络延迟对游戏业务的影响则更加严重. 为了解决这个问题, 企业会将业务部署在全国各地, 不管用户在哪里出差, 他都可以就近访问最近的中心. 由于标记用户的只有IP地址, 怎么根据用户的接入IP来判断他应该访问哪个中心呢? 通过这个实验, 大家可以了解到在数据库中如何存储IP地址范围和各中心IDC的映射关系, 以及如何根据用户的来源IP(接入IP)来判断他应该去哪个中心IDC访问.
会议室预定系统最关键的几个点: 1、查询: 按位置、会议室大小、会议室设备(是否有投屏、电话会议、视频会议...)、时间段查询符合条件的会议室. 2、预定: 并写入已订纪录. 3、强约束: 防止同一个会议室的同一个时间片出现被多人预定的情况.
零售连锁, 制作业的工厂等场景中, 普遍数字化率较低, 通常存在这些问题: 数据离线, 例如每天盘点时上传, 未实现实时汇总到数据库中. 数据格式多, 例如excel, csv, txt, 甚至纸质手抄. 让我们一起来思考一下, 如何使用较少的投入实现数据汇总分析?
很多业务场景中需要判断商标侵权, 避免纠纷. 例如 电商的商品文字描述、图片描述中可能有侵权内容. 特别是跨境电商, 在一些国家侵权查处非常严厉. 注册公司名、产品名时可能侵权. 在写文章时, 文章的文字内容、视频内容、图片内容中的描述可能侵权. 例如postgresql是个商标, 如果你使用posthellogresql、postgresqlabc也可能算侵权. 以跨境电商为力, 为了避免侵权, 在发布内容时需要商品描述中出现的品牌名、产品名等是否与已有的商标库有相似. 对于跨境电商场景, 由于店铺和用户众多, 商品的修改、发布是比较高频的操作, 所以需要实现高性能的字符串相似匹配功能.