【赵渝强老师】大数据技术的理论基础
本文介绍了大数据平台的核心思想,包括Google的三篇重要论文:Google文件系统(GFS)、MapReduce分布式计算模型和BigTable大表。这些论文奠定了大数据生态圈的技术基础,进而发展出了Hadoop、Spark和Flink等生态系统。文章详细解释了GFS的架构、MapReduce的计算过程以及BigTable的思想和HBase的实现。
【赵渝强老师】HBase的表结构
本文介绍了Google的BigTable思想及其对HBase的影响。BigTable将所有数据存入一张表中以提高查询性能,而HBase作为其具体实现,采用列式存储,适合数据分析和处理。文章通过示例说明了HBase的表结构和数据插入方法,并提供了相关代码和图示。
秒级响应与低成本实现!TDengine 助力多元量化交易系统的背后故事 | 征文
在不久前的“2024,我想和 TDengine 谈谈”征文活动中,我们收到了许多精彩的投稿,反映了用户与 TDengine 之间的真实故事和独特见解。今天,我们很高兴地分享此次活动的第一名作品。这篇文章详细阐述了广西多元量化科技有限公司如何利用 TDengine 构建高效的量化交易系统,提升交易效率和决策质量。通过深入分析数据库选型和数据架构设计,作者展示了 TDengine 在金融领域的强大优势和广泛应用前景。接下来让我们一同阅读,探索这一前沿技术如何推动现代金融交易的智能化与高效化。
Postgres数据库BRIN索引介绍
BRIN索引是PostgreSQL提供的一种高效、轻量级的索引类型,特别适用于大规模、顺序数据的范围查询。通过存储数据块的摘要信息,BRIN索引在降低存储和维护成本的同时,提供了良好的查询性能。然而,其适用场景有限,不适合随机数据分布或频繁更新的场景。在选择索引类型时,需根据数据特性和查询需求进行权衡。希望本文对你理解和使用PostgreSQL的BRIN索引有所帮助。