附获奖名单|巅峰时刻,「第6届天池全球数据库大赛」圆满收官
由阿里云和英特尔主办的“第6届天池全球数据库大赛——PolarDB TPC-C性能优化挑战赛”在武汉圆满落下帷幕。历经近3个月的层层选拔、高手过招,10支队伍从全球3500多支参赛战队中脱颖而出,成功晋级大赛决赛圈。最终,「旅途愉快」队伍赢得总冠军荣誉。
PolarDB-PG AI最佳实践3 :PolarDB AI多模态相似性搜索最佳实践
本文介绍了如何利用PolarDB结合多模态大模型(如CLIP)实现数据库内的多模态数据分析和查询。通过POLAR_AI插件,可以直接在数据库中调用AI模型服务,无需移动数据或额外的工具,简化了多模态数据的处理流程。具体应用场景包括图像识别与分类、图像到文本检索和基于文本的图像检索。文章详细说明了技术实现、配置建议、实战步骤及多模态检索示例,展示了如何在PolarDB中创建模型、生成embedding并进行相似性检索
PolarDB图数据库快速入门
图数据库(Graph Database)专门存储图数据,适合处理社交网络、知识图谱等复杂关系。它使用图查询语言(如Cypher、Gremlin)进行操作。PolarDB兼容OpenCypher语法,支持创建、查询、更新和删除图数据,包括模式匹配、过滤、MERGE避免重复、可视化工具等功能,简化了图数据的管理和应用。
基于PolarDB的图分析:银行金融领域图分析实践
本文介绍了如何使用阿里云PolarDB PostgreSQL版及其图数据库引擎(兼容Apache AGE,A Graph Extension)进行图数据分析,特别针对金融交易欺诈检测场景。PolarDB PostgreSQL版支持图数据的高效处理和查询,包括Cypher查询语言的使用。文章详细描述了从数据准备、图结构创建到具体查询示例的过程,展示了如何通过图查询发现欺诈交易的关联关系,计算交易间的Jaccard相似度,从而进行欺诈预警。
智答引领|AnalyticDB与通义千问大模型联手打造社区问答新体验
PolarDB开源社区推出基于云原生数据仓库AnalyticDB和通义千问大模型的“PolarDB知识问答助手”,实现一站式全链路RAG能力,大幅提升查询效率和问答准确率。该系统整合静态和动态知识库,提供高效的数据检索与查询服务,支持多种场景下的精准回答,并持续优化用户体验。欢迎加入钉群体验并提出宝贵意见。
夺冠在即 | PolarDB数据库创新设计赛(天池杯)决赛答辩通知
2024年全国大学生计算机系统能力大赛PolarDB数据库创新设计赛(天池杯)于8月21日启动,吸引了200多所高校近千支队伍参赛。经过激烈角逐,60支队伍晋级决赛第一阶段,36支队伍脱颖而出进入现场答辩,将于12月29日在武汉大学争夺最终奖项。决赛要求选手基于PolarDB-PG开源代码部署集群并优化TPCH查询性能。完赛率超90%,成绩表现出明显梯度,前20名均在500秒内完成。评委来自学术界和工业界,确保评选公正。预祝选手们取得优异成绩!