【C语言】C语言的变量和声明系统性讲解
在C语言中,声明和定义是两个关键概念,分别用于告知编译器变量或函数的存在(声明)和实际创建及分配内存(定义)。声明可以多次出现,而定义只能有一次。声明通常位于头文件中,定义则在源文件中。通过合理组织头文件和源文件,可以提高代码的模块化和可维护性。示例包括全局变量、局部变量、函数、结构体、联合体、数组、字符串、枚举和指针的声明与定义。
【C语言】深入解析C语言结构体:定义、声明与高级应用实践
通过根据需求合理选择结构体定义和声明的放置位置,并灵活结合动态内存分配、内存优化和数据结构设计,可以显著提高代码的可维护性和运行效率。在实际开发中,建议遵循以下原则:
- **模块化设计**:尽可能封装实现细节,减少模块间的耦合。
- **内存管理**:明确动态分配与释放的责任,防止资源泄漏。
- **优化顺序**:合理排列结构体成员以减少内存占用。
【C语言】全面系统讲解 `#pragma` 指令:从基本用法到高级应用
在本文中,我们系统地讲解了常见的 `#pragma` 指令,包括其基本用法、编译器支持情况、示例代码以及与传统方法的对比。`#pragma` 指令是一个强大的工具,可以帮助开发者精细控制编译器的行为,优化代码性能,避免错误,并确保跨平台兼容性。然而,使用这些指令时需要特别注意编译器的支持情况,因为并非所有的 `#pragma` 指令都能在所有编译器中得到支持。
【AI系统】算子开发编程语言 Ascend C
本文详细介绍了昇腾算子开发编程语言 Ascend C,旨在帮助开发者高效完成算子开发与模型调优。Ascend C 原生支持 C/C++标准,通过多层接口抽象、自动并行计算等技术,简化开发流程,提高开发效率。文章还探讨了并行计算的基本原理及大模型并行加速策略,结合 Ascend C 的 SPMD 编程模型和流水线编程范式,为读者提供了深入理解并行计算和 AI 开发的重要工具和方法。
【AI系统】Ascend C 编程范式
本文详细探讨了Ascend C编程范式下的向量计算编程,重点介绍了自定义向量算子的开发流程,包括算子分析、核函数定义与封装、算子数据通路及算子类实现等内容。文章通过具体的`add_custom`算子开发实例,解析了向量算子的初始化、数据搬入、计算与数据搬出等核心步骤,以及数据切分策略,旨在帮助读者理解Ascend C的设计理念及其向量算子的编写思路。
AscendC从入门到精通系列(五)调用基于工程开发AscendC算子
单算子API调用方式是通过C语言API直接调用已编译的自定义算子。首先,需基于AscendC算子工程完成算子的定义与实现,并通过编译脚本部署。编译后,生成的头文件和动态库支持在应用程序中直接调用算子,包括初始化AscendCL、申请资源、数据传输、计算workspace、执行算子、同步等待及资源释放等步骤。编译算子调用程序时,需正确配置CMakeLists.txt,确保头文件和动态库的路径正确。
ATB算子实现原理解读
本文详细介绍了Ascend Transformer Boost(ATB)加速库中三种类型算子的执行流程及其与CANN中其他算子的区别。文章首先概述了ATB算子的实现步骤,接着深入解析了单算子和图算子的执行流程,包括kernel图构建、输入准备、内存计算、tiling数据处理及任务下发等环节。此外,还探讨了ATB在host侧性能优化上的几种机制,如Tiling Cache、Setup与InferShape复用、Runner Pool等,以及ATB中的内存优化与管理策略。最后,介绍了Context类的功能和作用,包括它如何管理ATB内部的各种公共资源。