实时计算 Flink
实时计算Flink版是阿里云提供的全托管Serverless Flink云服务,基于 Apache Flink 构建的企业级、高性能实时大数据处理系统。提供全托管版 Flink 集群和引擎,提高作业开发运维效率。
blink测试技术介绍
blink测试团队成立一年多的时间,从无到有,逐步建立起完整的blink测试体系,从代码质量到集成测试再到预发测试,全方位保障blink质量,取得了显著的成果。
Flume+Kafka+Flink+Redis构建大数据实时处理系统:实时统计网站PV、UV展示
1.大数据处理的常用方法 大数据处理目前比较流行的是两种方法,一种是离线处理,一种是在线处理,基本处理架构如下: 在互联网应用中,不管是哪一种处理方式,其基本的数据来源都是日志数据,例如对于web应用来说,则可能是用户的访问日志、用户的点击日志等。
使用 Kafka 和 Flink 构建实时数据处理系统
引言 在很多领域,如股市走向分析, 气象数据测控,网站用户行为分析等,由于数据产生快,实时性强,数据量大,所以很难统一采集并入库存储后再做处理,这便导致传统的数据处理架构不能满足需要。流计算的出现,就是为了更好地解决这类数据在处理过程中遇到的问题。
Flink SQL 功能解密系列 —— 流式 TopN 挑战与实现
TopN 是统计报表和大屏非常常见的功能,主要用来实时计算排行榜。流式的 TopN 不同于批处理的 TopN,它的特点是持续的在内存中按照某个统计指标(如出现次数)计算 TopN 排行榜,然后当排行榜发生变化时,发出更新后的排行榜。
实时计算 Flink SQL 核心功能解密
Flink SQL 是于2017年7月开始面向集团开放流计算服务的。虽然是一个非常年轻的产品,但是到双11期间已经支撑了数千个作业,在双11期间,Blink 作业的处理峰值达到了5+亿每秒,而其中仅 Flink SQL 作业的处理总峰值就达到了3亿/秒。
Flink SQL 功能解密系列 —— 阿里云流计算/Blink支持的connectors
Connector 是连接外部数据和blink计算框架的桥梁,也是流计算的入口和出口。目前,blink支持了集团内部绝大多数的上下游(如下图),详细的接入方法可以见官方文档,本文主要阐述connector设计和使用上需要注意的问题。
Flink SQL 功能解密系列 —— 流计算“撤回(Retraction)”案例分析
通俗讲retract就是传统数据里面的更新操作,也就是说retract是流式计算场景下对数据更新的处理方式。
Flink SQL 功能解密系列 —— 维表 JOIN 与异步优化
流计算中一个常见的需求就是为数据流补齐字段。因为数据采集端采集到的数据往往比较有限,在做数据分析之前,就要先将所需的维度信息补全。比如采集到的交易日志中只记录了商品 id,但是在做业务时需要根据店铺维度或者行业纬度进行聚合,这就需要先将交易日志与商品维表进行关联,补全所需的维度信息。
Flink SQL 功能解密系列 —— 数据去重的技巧和思考
去重逻辑在业务处理中使用广泛,大致可以分两类:DISTINCT去重和FIRST_VALUE主键去重,两者的区别是DISTINCT去重是对整行数据进行去重,比如tt里面数据可能会有重复,我们要去掉重复的数据;FIRST_VALUE是根据主键进行去重,可以看成是一种业务层面的去重,但是真实的业务场景使用也很普遍,比如一个用户有多次点击,业务上只需要取第一条。
分布式Snapshot和Flink Checkpointing简介
最近在学习Flink的Fault Tolerance,了解到Flink在Chandy Lamport Algorithm的基础上扩展实现了一套分布式Checkpointing机制,这个机制在论文"Lightweight Asynchronous Snapshots for Distributed Dataflows"中进行了详尽的描述。
【对话科技】Flink技术介绍和新功能展望
2017年6月22号,由“京城学堂”和阿里巴巴集团技术发展部主办的“对话科技”系列讲座邀请到了Apache Flink项目的PMC成员,来自德国DataArtisans公司的Till Rohrmann,在北京阿里中心为关注实时计算技术的阿里同学做了一场关于Apache Flink技术发展的精彩分享。
Flink SQL 功能解密系列 —— 解决热点问题的大杀器MiniBatch
在Blink的流式任务中,State相关的操作通常都会成为整个任务的性能瓶颈。实时计算部-查询和优化团队开发了MiniBatch功能,大幅降低了State操作的开销,在今年的双11中,几乎所有适用的任务都启用了MiniBatch功能。
权威详解 | 阿里新一代实时计算引擎 Blink,每秒支持数十亿次计算
阿里巴巴需要研发世界级一流的流式计算引擎,实时处理海量数据,提供在线统计、学习和预测能力,不仅支持阿里巴巴自己的核心电商场景,同时也能通过阿里云向外部中小企业提供流式计算服务,输出实时计算能力,这就是我今天要分享的最新一代阿里巴巴实时计算引擎Blink。
流计算StreamCompute
背景 每年的双十一除了“折扣”,全世界(特别是阿里人)都关注的另一个焦点是面向媒体直播的“实时大屏”(如下图所示)。包括总成交量在内的各项指标,通过数字维度展现了双十一狂欢节这一是买家,卖家及物流小二一起创造的奇迹! 双十一媒体直播大屏 这一大屏背后需要实时处理海量的庞大电商系统各个模块产生的