实现步骤
- 用高斯滤波器平滑图像
- 计算滤波后图像梯度的幅值和方向
- 对梯度幅值应用非极大值抑制,其过程为找出图像梯度中的局部极大值点,把其它非局部极大值点置零以得到细化的边缘
- 用双阈值算法检测和连接边缘,使用两个阈值 T1 和 T2(T1>T2),T1 用来找到每条线段,T2 用来在这些线段的两个方向上延伸寻找边缘的断裂处,并连接这些边缘
高斯滤波
由高斯滤波器的二维可分性(X 轴与 Y 轴方向进行高斯滤波互不干扰),代码采用两次 1*5 一维高斯滤波器[ 1 , 4 , 6 , 4 , 1 ] [1, 4, 6, 4, 1][1,4,6,4,1]对 X、Y 方向分别进行卷积(对 Y 方向需要先转置再卷积,之后再转置回来)以实现 5*5 二维高斯滤波器。由于可将一维高斯滤波器封装为一个函数 SingleGaussFilter,简化了代码量和程序复杂度
一阶偏导有限差分计算梯度幅值和方向
计算梯度
采用算子
以实现
计算幅值和相角
幅值计算式
相角计算式
非极大值抑制
由于得到梯度之后,仍存在双边缘、宽边缘和噪声点等影响,若直接进行阈值分割确定边缘,结果并不理想。为解决宽边缘问题,可以将整条边缘认为是一条山脉,而真边缘则为山脊,故尝试采用局部极大值抑制,只保留 3*3 邻域且特定方向内的极大值,以消除非山脊的山脉影响
具体措施
- 依据相角[ − 9 0 ∘ , + 9 0 ∘ ]将梯度角的变化范围减少到圆周的四个扇区之一([ − 22. 5 ∘ , + 22. 5 ∘ ] 对应 0 区,[ − 67. 5 ∘ , − 22. 5 ∘ ] 对应 1 区,[ + 22. 5 ∘ , + 67. 5 ∘ ] 对应 3 区,[ − 9 0 ∘ , − 67. 5 ∘ ]和[ + 67. 5 ∘ , + 9 0 ∘ ] 对应 2 区),而每一个扇区对应着当前点 8 邻域的 4 个方向
- 将每一点与沿着梯度线方向的两个象素比较,若当前点梯度值≥ \geq≥沿梯度线的两个相邻象素梯度值,则令保留当前点不变;否则,置 0
双阈值算法检测和连接边缘
由于设置单一阈值,在调节阈值大小的同时,真实边缘的增多往往伴随着虚假边缘和噪声点的增多,而将阈值提高减少虚假边缘和噪声点的同时,会造成边缘轮廓丢失的问题。为解决这个矛盾,采用双阈值分割算法,通过低阈值将所有可能边缘检测出来,利用高阈值检测出所有真边缘(可能有部分轮廓丢失),则可以利用高阈值图像作为种子点,索引出所有在低阈值图像上的所有相邻点,以补全高阈值图像,来实现抑制噪声和虚假边缘,同时减少真边缘丢失的目的
实现代码
#include <iostream> #include <cmath> #include <opencv2/imgproc/types_c.h> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> using namespace cv; using namespace std; int MyCanny(const Mat gray_image, Mat &fin_image, int high_threshold, int low_threshold); void GaussFilter(const Mat orig_image, Mat& gauss_image); void SingleGaussFilter(Mat orig_image, Mat& single_gauss_image); void Gradient(Mat image, Mat& X, Mat& Y); void SingleGradient(Mat image, Mat& single_gradient); void AmpliPhase(Mat X, Mat Y, Mat &li, Mat &phase); void NonMaximaSuppression(Mat ampli, Mat phase, Mat &nms_image); void DoubleThreshold(Mat image, Mat& high_threshold_image, Mat& low_threshold_image, int high_threshold, int low_threshold); void EdgeTracking(Mat high_threshold_image, Mat low_threshold_image, Mat &edge_tracking_image); void SinglePointTracking(Mat &high_threshold_image, Mat &subtract_image, Mat& edge_tracking_image, int row, int col); int main() { Mat image, gray_image; Mat fin_image= Mat::zeros(image.rows, image.cols, CV_8UC1); image = imread("c++.jpeg"); if (image.empty()) { cout << "Could not open or find the image" << endl; return -1; } else cvtColor(image, gray_image, CV_RGB2GRAY); imshow("gray_image", gray_image); imwrite("gray_image.jpg", gray_image); int high_threshold=100; // 120 int low_threshold=20; // 50 MyCanny(gray_image, fin_image, high_threshold, low_threshold); Mat cvCanny_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1); Canny(gray_image, cvCanny_image, high_threshold, low_threshold); imshow("cvCanny_image", cvCanny_image); imwrite("cvCanny_image.jpg", cvCanny_image); waitKey(0); return 0; } int MyCanny(const Mat gray_image, Mat& fin_image, int high_threshold, int low_threshold) { Mat gauss_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1); // 高斯滤波 GaussFilter(gray_image, gauss_image); imshow("gauss_image", gauss_image); imwrite("gauss_image.jpg", gauss_image); // X、Y方向梯度计算 Mat X = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1); Mat Y = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1); Gradient(gray_image, X, Y); Mat temp_X = X.clone(); temp_X.convertTo(temp_X, CV_8UC1); imshow("X", temp_X); imwrite("X.jpg", temp_X); Mat temp_Y = Y.clone(); temp_Y.convertTo(temp_Y, CV_8UC1); imshow("Y", temp_Y); imwrite("Y.jpg", temp_Y); // 计算幅值、相角 Mat ampli = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1); Mat phase = Mat::zeros(gray_image.rows, gray_image.cols, CV_32FC1); AmpliPhase(X, Y, ampli, phase); Mat temp_ampli = ampli.clone(); temp_ampli.convertTo(temp_ampli, CV_8UC1); imshow("ampli", temp_ampli); imwrite("ampli.jpg", temp_ampli); Mat temp_phase = phase.clone(); temp_ampli.convertTo(temp_phase, CV_8UC1); imshow("phase", temp_phase); imwrite("phase.jpg", temp_phase); // 非极大值抑制 Mat nms_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1); NonMaximaSuppression(ampli, phase, nms_image); nms_image.convertTo(nms_image, CV_8UC1); imshow("nms_image", nms_image); imwrite("nms_image.jpg", nms_image); // 双阈值分割 Mat high_threshold_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1); Mat low_threshold_image = Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1); DoubleThreshold(nms_image, high_threshold_image, low_threshold_image, high_threshold, low_threshold); imshow("high_threshold_image", high_threshold_image); imwrite("high_threshold_image.jpg", high_threshold_image); imshow("low_threshold_image", low_threshold_image); imwrite("low_threshold_image.jpg", low_threshold_image); // 边缘连接 Mat edge_tracking_image= Mat::zeros(gray_image.rows, gray_image.cols, CV_8UC1); EdgeTracking( high_threshold_image,low_threshold_image, edge_tracking_image); imshow("edge_tracking_image", edge_tracking_image); imwrite("edge_tracking_image.jpg", edge_tracking_image); return 0; } void GaussFilter(const Mat orig_image, Mat &gauss_image) { Mat temp_gauss_image = Mat::zeros(orig_image.rows, orig_image.cols, CV_8UC1); SingleGaussFilter(orig_image, temp_gauss_image); Mat t_temp_gauss_image = temp_gauss_image.t(); Mat temp_fin_gauss_image= Mat::zeros(t_temp_gauss_image.rows, t_temp_gauss_image.cols, CV_8UC1); SingleGaussFilter(t_temp_gauss_image, temp_fin_gauss_image); gauss_image = temp_fin_gauss_image.t(); } void SingleGaussFilter(Mat orig_image, Mat& single_gauss_image) { int gauss_template[] = {1, 4, 6, 4, 1}; int template_length = sizeof(gauss_template) / sizeof(gauss_template[0]); int total = 0; int rows = orig_image.rows; int cols = orig_image.cols; for (int i = 0; i < template_length; i++) total += gauss_template[i]; for (int i = 0; i < rows; i++) { uchar* data = orig_image.ptr<uchar>(i); for (int j = 0; j < cols; j++) { int sum = 0; for (int k = -int((template_length - 1) / 2); k <= int((template_length - 1) / 2); k++) { // 边界处理,超出边界的值赋为边界值 int col = j + k; col = col < 0 ? 0 : col; col = col >= cols ? cols - 1 : col; // 卷积和 sum += gauss_template[k+ int((template_length - 1) / 2)] * data[col]; } single_gauss_image.ptr<uchar>(i)[j] = sum / total; } } } void Gradient(Mat image, Mat &X, Mat &Y) { Mat t_Y = Mat::zeros(image.cols, image.rows, CV_32FC1); Mat t_image = image.t(); SingleGradient(image, X); SingleGradient(t_image, t_Y); Y = t_Y.t(); } void SingleGradient(Mat image, Mat& single_gradient) { int grad_template[2][2] = {{-1,1},{-1,1}}; int rows = image.rows; int cols = image.cols; for (int i = 0; i < rows; i++) { // 读取两行数据 uchar* image_row[2]; image_row[0] = image.ptr<uchar>(i); image_row[1] = image.ptr<uchar>((i + 1) >= rows ? i:i+1); for (int j = 0; j < cols; j++) { int sum = 0; for (int k = 0; k < 2 ; k++) { // 边界处理,超出边界的值赋为边界值 int row = i + k; row = row >= rows ? rows - 1 : row; for (int g = 0; g < 2 ; g++) { // 边界处理,超出边界的值赋为边界值 int col = j + g; col = col >= cols ? cols - 1 : col; sum += grad_template[k][g] * image_row[k][col]; } } single_gradient.ptr<float>(i)[j] = sum / 2; } } } void AmpliPhase(Mat X, Mat Y, Mat &li, Mat &phase) { for (int i = 0; i < X.rows; i++) { float* data_X = X.ptr<float>(i); float* data_Y = Y.ptr<float>(i); float* data_ampli = ampli.ptr<float>(i); float* data_phase = phase.ptr<float>(i); for (int j = 0; j < X.cols; j++) { data_ampli[j] = sqrt(data_X[j]* data_X[j]+ data_Y[j] * data_Y[j]); data_phase[j] = atan(data_Y[j] / (data_X[j]>0.000001? data_X[j]:0.000001)) * 180/3.141592; if (int(abs(data_phase[j])) > 90) { cout << int(abs(data_phase[j])) << endl; waitKey(0); } } } } void NonMaximaSuppression(Mat ampli, Mat phase, Mat& nms_image) { int up = 1; int down = 1; int left = 1; int right = 1; for (int i = 1; i < ampli.rows-1; i++) { float* ampli_data[3]; ampli_data[0] = ampli.ptr<float>(i-up); ampli_data[1] = ampli.ptr<float>(i); ampli_data[2] = ampli.ptr<float>(i+down); float* temp_phase = phase.ptr<float>(i); uchar* temp_nms_image = nms_image.ptr<uchar>(i); for (int j = 1; j < ampli.cols-1; j++) { int temp_single_phase = int(temp_phase[j]); // 左右比 if (temp_single_phase >= -22.5 && temp_single_phase <= 22.5) { if (ampli_data[1][j] >= ampli_data[1][i-left] && ampli_data[1][j] >= ampli_data[1][i+right]) { temp_nms_image[j] = uchar(ampli_data[1][j]); } } // 右上左下比 else if (temp_single_phase < -22.5 && temp_single_phase >= -22.5 - 45) { if (ampli_data[1][j] >= ampli_data[1-up][j+right] && ampli_data[1][j] >= ampli_data[1 + down][j - left]) { temp_nms_image[j] = uchar(ampli_data[1][j]); } } // 右下左上比 else if (temp_single_phase > 22.5 && temp_single_phase <= 22.5 + 45) { if (ampli_data[1][j] >= ampli_data[1 +down][j + right] && ampli_data[1][j] >= ampli_data[1 - up][j - left]) { temp_nms_image[j] = uchar(ampli_data[1][j]); } } // 上下比 else if ((temp_single_phase > 22.5 + 45 && temp_single_phase <= 90) || (temp_single_phase < -22.5 - 45 && temp_single_phase >= -90)) { if (ampli_data[1][j] >= ampli_data[1 - up][j] && ampli_data[1][j] >= ampli_data[1 + down][j ]) { temp_nms_image[j] = uchar(ampli_data[1][j]); } } else if(0) { cout << temp_phase[j]<< "error in angles!!!"<<endl; waitKey(0); return; } } } } void DoubleThreshold(Mat image, Mat& high_threshold_image, Mat& low_threshold_image, int high_threshold, int low_threshold) { for (int i = 0; i < image.rows; i++) { uchar* data = image.ptr<uchar>(i); uchar* high_threshold_data = high_threshold_image.ptr<uchar>(i); uchar* low_threshold_data = low_threshold_image.ptr<uchar>(i); for (int j = 0; j < image.cols; j++) { high_threshold_data[j] = data[j] > high_threshold ? 255 : 0; low_threshold_data[j] = data[j] > low_threshold ? 255 : 0; } } } void EdgeTracking(Mat high_threshold_image, Mat low_threshold_image, Mat &edge_tracking_image) { edge_tracking_image = high_threshold_image.clone(); Mat subtract_image = low_threshold_image - high_threshold_image; imshow("subtract_image ", subtract_image); imwrite("subtract_image.jpg", subtract_image); for (int i = 0; i < high_threshold_image.rows; i++) { for (int j = 0; j < high_threshold_image.cols; j++) { if (high_threshold_image.at<uchar>(i, j) == 255) { SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image,i,j); } } } } void SinglePointTracking(Mat &high_threshold_image,Mat &subtract_image,Mat &edge_tracking_image,int row, int col) { // 右点 if ((col + 1 <= subtract_image.cols - 1) && (subtract_image.at<uchar>(row, col+1) == 255)) { edge_tracking_image.at<uchar>( row, col+1) = 255; subtract_image.at<uchar>(row, col + 1) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row, col + 1); } // 右下点 if ((row + 1 <= subtract_image.rows - 1) && (col + 1 <= subtract_image.cols - 1) && (subtract_image.at<uchar>(row + 1 , col + 1) == 255)) { edge_tracking_image.at<uchar>(row + 1, col + 1) = 255; subtract_image.at<uchar>(row+1, col + 1) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row + 1, col + 1); } // 下点 if ((row + 1 <= subtract_image.rows - 1) && (subtract_image.at<uchar>(row + 1, col ) == 255)) { edge_tracking_image.at<uchar>(row + 1, col) = 255; subtract_image.at<uchar>(row+1, col ) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row + 1, col); } // 左下点 if ((row + 1 <= subtract_image.rows-1)&&(col-1 >= 0) && (subtract_image.at<uchar>(row+1,col-1) == 255)) { edge_tracking_image.at<uchar>(row + 1, col - 1) = 255; subtract_image.at<uchar>(row+1, col - 1) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row + 1, col - 1); } // 左点 if ((col - 1 >= 0) && (subtract_image.at<uchar>( row,col-1) == 255)) { edge_tracking_image.at<uchar>(row, col - 1) = 255; subtract_image.at<uchar>(row, col - 1) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row, col - 1); } // 左上点 if ((row-1>=0) && (col-1>=0) && (subtract_image.at<uchar>(row-1,col - 1) == 255)) { edge_tracking_image.at<uchar>(row - 1, col - 1) = 255; subtract_image.at<uchar>(row-1, col - 1) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row - 1, col - 1); } // 上点 if ( (row - 1 >= 0) && (subtract_image.at<uchar>( row-1,col) == 255)) { edge_tracking_image.at<uchar>(row - 1, col) = 255; subtract_image.at<uchar>(row-1, col) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row - 1, col); } // 右上点 if ((row -1 >= 0) && (col + 1 <= subtract_image.cols - 1) && (subtract_image.at<uchar>(row - 1,col + 1) == 255)) { edge_tracking_image.at<uchar>(row - 1, col + 1) = 255; subtract_image.at<uchar>(row-1, col + 1) = 0; SinglePointTracking(high_threshold_image, subtract_image, edge_tracking_image, row - 1, col + 1); } }
实验结果
原图
灰度图
高斯滤波
X方向梯度
Y方向梯度
梯度
非极大抑制
高阈值梯度图
低阈值梯度图
低高阈值相减梯度图
自己实现的Canny结果