Linux IO多路转接——UDP通信

本文涉及的产品
数据传输服务 DTS,数据迁移 small 3个月
推荐场景:
MySQL数据库上云
数据传输服务 DTS,数据同步 small 3个月
推荐场景:
数据库上云
数据传输服务 DTS,数据同步 1个月
简介: Linux IO多路转接——UDP通信

UDP服务器


传输层主要应用的协议模型有两种,一种是TCP协议,另外一种则是UDP协议。TCP协议在网络通信中占主导地位,绝大多数的网络通信借助TCP协议完成数据传输。但UDP也是网络通信中不可或缺的重要通信手段。


相较于TCP而言,UDP通信的形式更像是发短信。不需要在数据传输之前建立、维护连接。只专心获取数据就好。


省去了三次握手的过程,通信速度可以大大提高,但与之伴随的通信的稳定性和正确率便得不到保证。因此,我们称UDP为“无连接的不可靠报文传递”。


那么与我们熟知的TCP相比,UDP有哪些优点和不足呢?


由于无需创建连接,所以UDP开销较小,数据传输速度快,实时性较强。多用于对实时性要求较高的通信场合,如视频会议、电话会议等。但随之也伴随着数据传输不可靠,传输数据的正确率、传输顺序和流量都得不到控制和保证。所以,通常情况下,使用UDP协议进行数据传输,为保证数据的正确性,我们需要在应用层添加辅助校验协议来弥补UDP的不足,以达到数据可靠传输的目的。


与TCP类似的,UDP也有可能出现缓冲区被填满后,再接收数据时丢包的现象。由于它没有TCP滑动窗口的机制,通常采用如下两种方法解决:


  1. 服务器应用层设计流量控制,控制发送数据速度。


  1. 借助setsockopt函数改变接收缓冲区大小。如:


#include <sys/socket.h>
int setsockopt(int sockfd, int level, int optname, const void *optval, socklen_t optlen);
  int n = 220x1024
  setsockopt(sockfd, SOL_SOCKET, SO_RCVBUF, &n, sizeof(n));


C/S模型-UDP



由于UDP不需要维护连接,程序逻辑简单了很多,但是UDP协议是不可靠的,保证通讯可靠性的机制需要在应用层实现。


编译运行server,在两个终端里各开一个client与server交互,看看server是否具有并发服务的能力。用Ctrl+C关闭server,然后再运行server,看此时client还能否和server联系上。和前面TCP程序的运行结果相比较,体会无连接的含义。


UDP通信流程



tcp与udp区别


  1. tcp - 面向连接的安全的数据包通信


基于流 sock_stream


  1. udp - 面向无连接不安全报文传输


代码


server


/*************************************************************************
    > File Name: server.c
    > Author: 杨永利
    > Mail: 1795018360@qq.com 
    > Created Time: 2020年10月28日 星期三 17时58分26秒
 ************************************************************************/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
int main(int argc, const char* argv[])
{
    // 创建套接字
    int fd = socket(AF_INET, SOCK_DGRAM, 0);
    if(fd == -1)
    {
        perror("socket error");
        exit(1);
    }
    // fd绑定本地的IP和端口
    struct sockaddr_in serv;
    memset(&serv, 0, sizeof(serv));
    serv.sin_family = AF_INET;
    serv.sin_port = htons(8765);
    serv.sin_addr.s_addr = htonl(INADDR_ANY);
    int ret = bind(fd, (struct sockaddr*)&serv, sizeof(serv));
    if(ret == -1)
    {
        perror("bind error");
        exit(1);
    }
    struct sockaddr_in client;
    socklen_t cli_len = sizeof(client);
    // 通信
    char buf[1024] = {0};
    while(1)
    {
        int recvlen = recvfrom(fd, buf, sizeof(buf), 0, 
                               (struct sockaddr*)&client, &cli_len);
        if(recvlen == -1)
        {
            perror("recvform error");
            exit(1);
        }
        printf("recv buf: %s\n", buf);
        char ip[64] = {0};
        printf("New Client IP: %s, Port: %d\n",
            inet_ntop(AF_INET, &client.sin_addr.s_addr, ip, sizeof(ip)),
            ntohs(client.sin_port));
        // 给客户端发送数据
        sendto(fd, buf, strlen(buf)+1, 0, (struct sockaddr*)&client, sizeof(client));
    }
    close(fd);
    return 0;
}


client


/*************************************************************************
    > File Name: client.c
    > Author: 杨永利
    > Mail: 1795018360@qq.com 
    > Created Time: 2020年10月28日 星期三 18时06分40秒
 ************************************************************************/
#include <stdio.h>
#include <unistd.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <string.h>
#include <arpa/inet.h>
int main(int argc, const char* argv[])
{
    // create socket
    int fd = socket(AF_INET, SOCK_DGRAM, 0);
    if(fd == -1)
    {
        perror("socket error");
        exit(1);
    }
    // 初始化服务器的IP和端口
    struct sockaddr_in serv;
    memset(&serv, 0, sizeof(serv));
    serv.sin_family = AF_INET;
    serv.sin_port = htons(8765);
    inet_pton(AF_INET, "127.0.0.1", &serv.sin_addr.s_addr);
    // 通信
    while(1)
    {
        char buf[1024] = {0};
        fgets(buf, sizeof(buf), stdin);
        // 数据的发送 - server - IP port
        sendto(fd, buf, strlen(buf)+1, 0, (struct sockaddr*)&serv, sizeof(serv));
        // 等待服务器发送数据过来
        recvfrom(fd, buf, sizeof(buf), 0, NULL, NULL);
        printf("recv buf: %s\n", buf);
    }
    close(fd);
    return 0;
}
相关实践学习
部署高可用架构
本场景主要介绍如何使用云服务器ECS、负载均衡SLB、云数据库RDS和数据传输服务产品来部署多可用区高可用架构。
Sqoop 企业级大数据迁移方案实战
Sqoop是一个用于在Hadoop和关系数据库服务器之间传输数据的工具。它用于从关系数据库(如MySQL,Oracle)导入数据到Hadoop HDFS,并从Hadoop文件系统导出到关系数据库。 本课程主要讲解了Sqoop的设计思想及原理、部署安装及配置、详细具体的使用方法技巧与实操案例、企业级任务管理等。结合日常工作实践,培养解决实际问题的能力。本课程由黑马程序员提供。
目录
打赏
0
0
0
0
40
分享
相关文章
【Linux开发实战指南】基于UDP协议的即时聊天室:快速构建登陆、聊天与退出功能
UDP 是一种无连接的、不可靠的传输层协议,位于IP协议之上。它提供了最基本的数据传输服务,不保证数据包的顺序、可靠到达或无重复。与TCP(传输控制协议)相比,UDP具有较低的传输延迟,因为省去了建立连接和确认接收等过程,适用于对实时性要求较高、但能容忍一定数据丢失的场景,如在线视频、语音通话、DNS查询等。 链表 链表是一种动态数据结构,用于存储一系列元素(节点),每个节点包含数据字段和指向下一个节点的引用(指针)。链表分为单向链表、双向链表和循环链表等类型。与数组相比,链表在插入和删除操作上更为高效,因为它不需要移动元素,只需修改节点间的指针即可。但访问链表中的元素不如数组直接,通常需要从
331 2
Linux C/C++之TCP / UDP通信
这篇文章详细介绍了Linux下C/C++语言实现TCP和UDP通信的方法,包括网络基础、通信模型、编程示例以及TCP和UDP的优缺点比较。
89 0
Linux C/C++之TCP / UDP通信
Linux基础-socket详解、TCP/UDP
综上所述,Linux下的Socket编程是网络通信的重要组成部分,通过灵活运用TCP和UDP协议,开发者能够构建出满足不同需求的网络应用程序。掌握这些基础知识,是进行更复杂网络编程任务的基石。
215 1
C语言 网络编程(七)UDP通信创建流程
本文档详细介绍了使用 UDP 协议进行通信的过程,包括创建套接字、发送与接收消息等关键步骤。首先,通过 `socket()` 函数创建套接字,并设置相应的参数。接着,使用 `sendto()` 函数向指定地址发送数据。为了绑定地址,需要调用 `bind()` 函数。接收端则通过 `recvfrom()` 函数接收数据并获取发送方的地址信息。文档还提供了完整的代码示例,展示了如何实现 UDP 的发送端和服务端功能。
网络编程进阶:UDP通信
网络编程进阶:UDP通信
323 0
在Linux中,我们都知道,dns采用了tcp协议,又采用了udp协议,什么时候采用tcp协议?什么 时候采用udp协议?为什么要这么设计?
在Linux中,我们都知道,dns采用了tcp协议,又采用了udp协议,什么时候采用tcp协议?什么 时候采用udp协议?为什么要这么设计?
【Linux】基础IO----系统文件IO & 文件描述符fd & 重定向(下)
【Linux】基础IO----系统文件IO & 文件描述符fd & 重定向(下)
91 0
【Linux】基础IO----理解缓冲区
【Linux】基础IO----理解缓冲区
91 0
【Linux】基础IO----理解缓冲区
【Linux系统编程】深入剖析:四大IO模型机制与应用(阻塞、非阻塞、多路复用、信号驱动IO 全解读)
在Linux环境下,主要存在四种IO模型,它们分别是阻塞IO(Blocking IO)、非阻塞IO(Non-blocking IO)、IO多路复用(I/O Multiplexing)和异步IO(Asynchronous IO)。下面我将逐一介绍这些模型的定义:
344 2
【网络编程入门】TCP与UDP通信实战:从零构建服务器与客户端对话(附简易源码,新手友好!)
在了解他们之前我们首先要知道网络模型,它分为两种,一种是OSI,一种是TCP/IP,当然他们的模型图是不同的,如下
253 1