Java——多线程高并发系列之线程池(Executor)的理解与使用

简介: Java——多线程高并发系列之线程池(Executor)的理解与使用

文章目录:


写在前面

Demo1(使用Executors创建线程池)

Demo2(使用ThreadPoolExecutor创建线程池)

关于ThreadPoolExecutor中的七大参数、四种拒绝策略

线程池的执行策略

写在前面


可以以 new Thread( () -> { 线程执行的任务 }).start();  这种形式开启一个线程。当 run()方法运行结束,线程对象会被 GC 释放。


在真实的生产环境中,可能需要很多线程来支撑整个应用,当线程数量非常多时,反而会耗尽 CPU 资源。如果不对线程进行控制与管理,反而会影响程序的性能。线程开销主要包括: 创建与启动线程的开销;线程销毁开销;线程调度的开销;线程数量受限 CPU 处理器数量,线程池就是有效使用线程的一种常用方式。线程池内部可以预先创建一定数量的工作线程,客户端代码直接将任务作为一个对象提交给线程池,线程池将这些任务缓存在工作队列中,线程池中的工作线程不断地从队列中取出任务并执行。

JDK 提供了一套 Executor 框架,可以帮助开发人员有效的使用线程池


Demo1(使用Executors创建线程池)


package com.szh.threadpool;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.TimeUnit;
/**
 * 线程池的基本使用
 */
public class Test01 {
    public static void main(String[] args) {
        //创建有 5 个线程大小的线程池
        ExecutorService executorService= Executors.newFixedThreadPool(5);
        //向线程池中提交13个任务, 这13个任务存储到线程池的阻塞队列中,
        //线程池中这 5 个线程就从阻塞队列中取任务执行
        for (int i = 0; i < 13; i++) {
            executorService.execute(new Runnable() {
                @Override
                public void run() {
                    System.out.println(Thread.currentThread().getId() + " 编号的线程正在执行任务,开始时间:"
                                    + System.currentTimeMillis());
                    try {
                        TimeUnit.MILLISECONDS.sleep(1000 * 3); //模拟任务执行时长
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            });
        }
        //关闭线程池
        executorService.shutdown();
    }
}

这里创建了固定大小为5的线程池,同时向线程池中提交了13个任务,那么每次执行都会由线程池中的这5个线程去线程池中的阻塞队列中取任务执行。

每次这5个子线程都是一起执行的,所以它们的开始时间可以看到是一样的。

Demo2(使用ThreadPoolExecutor创建线程池)


package com.szh.threadpool;
import java.util.concurrent.*;
/**
 *
 */
public class Test03 {
    public static void main(String[] args) {
        //用一个银行的例子来讲解这七大参数
        ExecutorService threadPool=new ThreadPoolExecutor(
                3, //指定线程池中核心线程的数量(两个常开业务窗口)
                5, //指定线程池中最大线程数量(总共五个窗口)
                2, //当线程池线程的数量超过 corePoolSize 时, 多余的空闲线程的存活时长, 即空闲线程在多长时长内销毁
                TimeUnit.SECONDS, //keepAliveTime 的时长单位
                new LinkedBlockingQueue<>(3), //任务队列, 把任务提交到该任务队列中等待执行(银行候客区的大小)
                Executors.defaultThreadFactory(), //默认线程池工厂
                new ThreadPoolExecutor.AbortPolicy()); //拒绝策略, 当任务太多来不及处理时, 如何拒绝
                /*
                    默认是 AbortPolicy() 会抛出异常
                    CallerRunsPolicy() 只要线程池没关闭, 会在调用者线程中运行当前被丢弃的任务
                    DiscardPolicy() 直接丢弃这个无法处理的任务
                    DiscardOldestPolicy() 将任务队列中最老的任务丢弃, 尝试再次提交新任务
                 */
        //向线程池中提交9个任务
        for (int i = 0; i < 9; i++) {
            threadPool.execute(new Runnable() {
                @Override
                public void run() {
                    System.out.println(Thread.currentThread().getName());
                }
            });
        }
        //关闭连接
        threadPool.shutdown();
    }
}

在定义线程池最大大小的时候,一般有两种策略CPU密集型和IO密集型,所谓CPU密集型,也就是,几核的CPU就定义为几,我的是八核,所以定义为8


Runtime.getRuntime().availableProcessors();// 获取CPU的核数。

IO密集型,就是判断程序中有多少个非常耗IO线程的程序,最大线程池的大小要大于这个值即可。


上面这个案例,我设定的线程池最大线程池数量为5,阻塞队列最大为3,加起来一共是8。也就是说最多可以容纳8个任务的存储。而我for循环中向线程池中提交了9个任务,在运行结果中可以看到,前8个可以正常执行,当执行到第9个任务的时候,因为线程池的核心线程池数量为39个任务显然已经超出,所以有3个任务会交给核心线程执行,9-3=6,其余6个会向阻塞队列中存储;然后线程池会判断阻塞队列示符已满,阻塞队列我设定最大为3,这个时候阻塞队列中最多只能容纳3个,所以此时任务余额:6-3=3,线程池面对其余3个任务会询问自己的最大线程池数量,这里我设定为5,因为之前核心线程池数量已经占用了3个,也就是说此时最大线程池数量还剩下5-3=2,那么线程池中最多只能只能再承受2个任务了,然而2<3,所以还有1个任务线程池是处理不了的,那么这个时候就会执行拒绝策略,我这里设定的是默认的拒绝策略,AbortPolicy直接抛出异常。


关于ThreadPoolExecutor中的七大参数、四种拒绝策略


七大参数。

int corePoolSize //核心线程池数量
int maximumPoolSize //最大线程池数量
long keepAliveTime //超时存活时间
TimeUnit unit //超时单位
BlockingQueue<Runnable> workQueue //阻塞队列
ThreadFactory threadFactory //线程工厂,用于创建线程
RejectedExecutionHandler handler //拒绝策略

而四种拒绝策略查看ThreadPoolExecutor的源码可知,它们四个其实就是ThreadPoolExecutor的四个静态内部类。


线程池的执行策略


1、线程池刚创建时,里面没有一个线程。任务队列是作为参数传进来的。不过,就算队列里面有任务,线程池也不会马上执行它们。


2、当调用execute()方法添加一个任务时,线程池会做如下判断:

1)如果正在运行的线程数量小于corePoolSize(核心线程数量),那么马上创建线程运行这个任务;

2)如果正在运行的线程数量大于或等于corePoolSize(核心线程数量),那么将这个任务加入到阻塞队列;

3)如果这时候阻塞队列满了,而且正在运行的线程数量小于maximumPoolSize(最大线程数了),那么还是要创建线程运行这个任务;

4)如果队列满了,而且正在运行的线程数量大于或等于maximumPoolSize(最大线程数了),那么线程池会执行拒绝策略(四种,默认是AbortPolicy直接抛出异常),告诉调用者我不能再接受任务了

5)当一个线程完成任务时,它会从队列中取下一个任务来执行。

6)当一个线程无事可做,超过一定的时间(keepAliveTime)时,线程池会判断,如果当前运行的线程数大于corePoolSize,那么这个线程就被停掉。所以线程池的所有任务完成后,它最终会收缩到corePoolSize的大小。

相关文章
|
6天前
|
安全 Java 数据库
一天十道Java面试题----第四天(线程池复用的原理------>spring事务的实现方式原理以及隔离级别)
这篇文章是关于Java面试题的笔记,涵盖了线程池复用原理、Spring框架基础、AOP和IOC概念、Bean生命周期和作用域、单例Bean的线程安全性、Spring中使用的设计模式、以及Spring事务的实现方式和隔离级别等知识点。
|
6天前
|
存储 监控 安全
一天十道Java面试题----第三天(对线程安全的理解------>线程池中阻塞队列的作用)
这篇文章是Java面试第三天的笔记,讨论了线程安全、Thread与Runnable的区别、守护线程、ThreadLocal原理及内存泄漏问题、并发并行串行的概念、并发三大特性、线程池的使用原因和解释、线程池处理流程,以及线程池中阻塞队列的作用和设计考虑。
|
1天前
|
缓存 Java
异步&线程池 线程池的七大参数 初始化线程的4种方式 【上篇】
这篇文章详细介绍了Java中线程的四种初始化方式,包括继承Thread类、实现Runnable接口、实现Callable接口与FutureTask结合使用,以及使用线程池。同时,还深入探讨了线程池的七大参数及其作用,解释了线程池的运行流程,并列举了四种常见的线程池类型。最后,阐述了在开发中使用线程池的原因,如降低资源消耗、提高响应速度和增强线程的可管理性。
异步&线程池 线程池的七大参数 初始化线程的4种方式 【上篇】
|
1天前
|
Java
"揭秘Java IO三大模式:BIO、NIO、AIO背后的秘密!为何AIO成为高并发时代的宠儿,你的选择对了吗?"
【8月更文挑战第19天】在Java的IO编程中,BIO、NIO与AIO代表了三种不同的IO处理机制。BIO采用同步阻塞模型,每个连接需单独线程处理,适用于连接少且稳定的场景。NIO引入了非阻塞性质,利用Channel、Buffer与Selector实现多路复用,提升了效率与吞吐量。AIO则是真正的异步IO,在JDK 7中引入,通过回调或Future机制在IO操作完成后通知应用,适合高并发场景。选择合适的模型对构建高效网络应用至关重要。
|
7天前
|
缓存 监控 Java
Java性能优化:从单线程执行到线程池管理的进阶实践
在Java开发中,随着应用规模的不断扩大和用户量的持续增长,性能优化成为了一个不可忽视的重要课题。特别是在处理大量并发请求或执行耗时任务时,单线程执行模式往往难以满足需求,这时线程池的概念便应运而生。本文将从应用场景举例出发,探讨Java线程池的使用,并通过具体案例和核心代码展示其在实际问题解决中的强大作用。
22 1
|
8天前
|
Java
Java线程池核心数为0时,线程池如何执行?
【8月更文挑战第11天】Java线程池核心数为0时,线程池如何执行?
21 1
|
5天前
|
Java UED
基于SpringBoot自定义线程池实现多线程执行方法,以及多线程之间的协调和同步
这篇文章介绍了在SpringBoot项目中如何自定义线程池来实现多线程执行方法,并探讨了多线程之间的协调和同步问题,提供了相关的示例代码。
32 0
|
3月前
|
消息中间件 Java Linux
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
2024年最全BATJ真题突击:Java基础+JVM+分布式高并发+网络编程+Linux(1),2024年最新意外的惊喜
|
2月前
|
缓存 NoSQL Java
Java高并发实战:利用线程池和Redis实现高效数据入库
Java高并发实战:利用线程池和Redis实现高效数据入库
192 0
|
2月前
|
存储 NoSQL Java
探索Java分布式锁:在高并发环境下的同步访问实现与优化
【6月更文挑战第30天】Java分布式锁在高并发下确保数据一致性,通过Redis的SETNX、ZooKeeper的临时节点、数据库操作等方式实现。优化策略包括锁超时重试、续期、公平性及性能提升,关键在于平衡同步与效率,适应大规模分布式系统的需求。
64 1