【数据聚类】基于蚁群算法实现聚类设计含Matlab源码

简介: 【数据聚类】基于蚁群算法实现聚类设计含Matlab源码

 1 简介

随着计算机的飞速发展,各个领域都产生了大量的数据,如何从海量的数据中找出需要的信息和有用的知识,成为社会中越来越关注的问题。经过众多专家学者的努力研究,一门新兴的学科----数据挖掘技术逐步的被用于海量数据的处理。从而有效的解决了“数据爆炸却知识贫乏”的问题。而作为数据挖掘技术之一的聚类分析也越来越受到研究者的关注,它既可用于独立数据的挖掘工具,也可用于其它数据挖掘的预处理步骤,颇具有研究价值。随着群体智能研究的不断深入,Deneubourg等人通过观察现实中蚂蚁堆积尸体和分类它们的幼体等自然行为,模拟蚂蚁的觅食活动,提出了蚁群算法的概念,并将蚁群算法引入到聚类分析中,从此开始了基于蚁群算法的聚类研究与应用。  

2 部分代码

clc;clf;clear; % X = 测试样本矩阵;%  X = load('data.txt');X=[2232.43  3077.87  1298.87;1580.1  1752.07  2463.04;1962.4  1594.97  1835.95;1495.18  1957.44  3498.02;1125.17  1594.39  2937.73;24.22  3447.31  2145.01;1269.07  1910.72  2701.97;1802.07  1725.81  1966.35;1817.36  1927.4  2328.79;1860.45  1782.88  1875.13;1237.91  2055.13  3405.09;688.94  2104.72  3198.51;1675.65  1747.23  1580.39;1806.02  1810.19  2191.12;74.56  3288.02  2433.87;307.35  3363.84  2021.61;1988.27  1657.51  2069.2;2173.92  2608.55  1803.57;372.16  3077.44  2163.46;576.6  2140.98  3320;1724.13  1704.49  1798.75;2501.21  2652.65  984.56;1656.94  1913.34  2459.07;362.51  3150.03  2472;565.74  2284.97  3024.58;1978.06  1536.13  2375.64;1661.06  1552.4  2005.05;790.29  2419.98  3051.16;1557.27  1746.27  1879.13;2793.36  3009.26  1073.55;1766.08  1803.14  1895.18;1207.88  1600.62  3123.07;245.75  3373.67  2248.45;2785.36  3052.81  1035.65;315.42  3088.29  2187.12;1243.28  2451.72  3111.99;829.84  1555.91  3139.21;1347.07  2364.31  3096.88;1926.98  1507.34  1626.47;1808.57  1608.78  1565.95;1124.1  1840.98  2819.41;2661  3302.39  1710.32;1805.55  1899.09  2400.6;1130.18  1902.42  2753.7;1355.19  1566.16  2927.81;1651.14  1774.03  1725.56;2110.63  3308.04  702.06;2788.11  3395.23  1684.45;1807.61  1680.56  2356.65;1363.58  1729.44  2749.55;1992.42  1526.9  1581.42;     ][N,n]=size(X);      % N =测试样本数;n =测试样本的属性数;K = 4;              % K = 组数; R = 100;            % R = 蚂蚁数; t_max = 1000;       % t_max =最大迭代次数;                 % 初始化clct timecluster_centerbest_solution = solution_ascend(1,1:end-1);IDY=ctranspose(best_solution)best_solution_function_value =  solution_ascend(1,end)%分类结果显示plot3(cluster_center(:,1),cluster_center(:,2),cluster_center(:,3),'o');grid;boxtitle('蚁群聚类结果(R=100,t=10000)')xlabel('X')ylabel('Y')zlabel('Z')YY=[1 2 3 4];index1 = find(YY(1) == best_solution)index2 = find(YY(2) == best_solution)index3 = find(YY(3) == best_solution)index4 = find(YY(4) == best_solution)line(X(index1,1),X(index1,2),X(index1,3),'linestyle','none','marker','*','color','g');line(X(index2,1),X(index2,2),X(index2,3),'linestyle','none','marker','*','color','r');line(X(index3,1),X(index3,2),X(index3,3),'linestyle','none','marker','+','color','b');line(X(index4,1),X(index4,2),X(index4,3),'linestyle','none','marker','s','color','b');rotate3d

3 仿真结果

image.gif编辑

4 参考文献

[1]耿德生. 基于蚁群算法的聚类研究与应用[D]. 山西大学, 2011.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关文章
|
20天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
27天前
|
存储 算法 数据可视化
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
46 2
|
5天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
5天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
37 8
|
6天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
5天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
23 7
|
7天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
6天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
6天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
23 3
|
11天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。