1.文件处理
读写文件是最常见的IO操作。Python内置了读写文件的函数,用法和C是兼容的。
读写文件前,先必须了解一下,在磁盘上读写文件的功能都是由操作系统提供的,现代操作系统不允许普通的程序直接操作磁盘,所以,读写文件就是请求操作系统打开一个文件对象(通常称为文件描述符),然后,通过操作系统提供的接口从这个文件对象中读取数据(读文件),或者把数据写入这个文件对象(写文件)。
读文件
要以读文件的模式打开一个文件对象,使用Python内置的open()函数,传入文件名和标示符:
>>> f = open('/Users/michael/test.txt', 'r')
标示符 ’r’ 表示读,这样,我们就成功地打开了一个文件。
如果文件不存在,open()函数就会抛出一个IOError的错误,并且给出错误码和详细的信息告诉你文件不存在:
>>> f=open('/Users/michael/notfound.txt', 'r') Traceback (most recent call last): File "<stdin>", line 1, in <module> FileNotFoundError: [Errno 2] No such file or directory: '/Users/michael/notfound.txt'
如果文件打开成功,接下来,调用read()方法可以一次读取文件的全部内容,Python把内容读到内存,用一个str对象表示:
>>> f.read() 'Hello, world!'
最后一步是调用close()方法关闭文件。文件使用完毕后必须关闭,因为文件对象会占用操作系统的资源,并且操作系统同一时间能打开的文件数量也是有限的:
>>> f.close()
由于文件读写时都有可能产生IOError,一旦出错,后面的f.close()就不会调用。所以,为了保证无论是否出错都能正确地关闭文件,我们可以使用try ... finally来实现:
try: f = open('/path/to/file', 'r') print(f.read()) finally: if f: f.close()
但是每次都这么写实在太繁琐,所以,Python引入了with语句来自动帮我们调用close()方法:
with open('/path/to/file', 'r') as f: print(f.read())
这和前面的try ... finally是一样的,但是代码更佳简洁,并且不必调用f.close()方法。
调用read()会一次性读取文件的全部内容,如果文件有10G,内存就爆了,所以,要保险起见,可以反复调用read(size)方法,每次最多读取size个字节的内容。另外,调用readline()可以每次读取一行内容,调用readlines()一次读取所有内容并按行返回list。因此,要根据需要决定怎么调用。
如果文件很小,read()一次性读取最方便;如果不能确定文件大小,反复调用read(size)比较保险;如果是配置文件,调用readlines()最方便:
for line in f.readlines(): print(line.strip()) # 把末尾的'\n'删掉
file-like Object
像open()函数返回的这种有个read()方法的对象,在Python中统称为file-like Object。除了file外,还可以是内存的字节流,网络流,自定义流等等。file-like Object不要求从特定类继承,只要写个read()方法就行。
StringIO就是在内存中创建的file-like Object,常用作临时缓冲。
二进制文件
前面讲的默认都是读取文本文件,并且是UTF-8编码的文本文件。要读取二进制文件,比如图片、视频等等,用'rb'模式打开文件即可:
>>> f = open('/Users/michael/test.jpg', 'rb') >>> f.read() b'\xff\xd8\xff\xe1\x00\x18Exif\x00\x00...' # 十六进制表示的字节
字符编码
要读取非UTF-8编码的文本文件,需要给open()函数传入encoding参数,例如,读取GBK编码的文件:
>>> f = open('/Users/michael/gbk.txt', 'r', encoding='gbk') >>> f.read() '测试'
遇到有些编码不规范的文件,你可能会遇到UnicodeDecodeError,因为在文本文件中可能夹杂了一些非法编码的字符。遇到这种情况,open()函数还接收一个errors参数,表示如果遇到编码错误后如何处理。最简单的方式是直接忽略:
>>> f = open('/Users/michael/gbk.txt', 'r', encoding='gbk', errors='ignore')
写文件
写文件和读文件是一样的,唯一区别是调用open()函数时,传入标识符'w'或者'wb'表示写文本文件或写二进制文件:
>>> f = open('/Users/michael/test.txt', 'w') >>> f.write('Hello, world!') >>> f.close()
你可以反复调用write()来写入文件,但是务必要调用f.close()来关闭文件。当我们写文件时,操作系统往往不会立刻把数据写入磁盘,而是放到内存缓存起来,空闲的时候再慢慢写入。只有调用close()方法时,操作系统才保证把没有写入的数据全部写入磁盘。忘记调用close()的后果是数据可能只写了一部分到磁盘,剩下的丢失了。所以,还是用with语句来得保险:
with open('/Users/michael/test.txt', 'w') as f: f.write('Hello, world!')
要写入特定编码的文本文件,请给open()函数传入encoding参数,将字符串自动转换成指定编码。
细心的人会发现,以'w'模式写入文件时,如果文件已存在,会直接覆盖(相当于删掉后新写入一个文件)。如果我们希望追加到文件末尾怎么办?可以传入'a'以追加(append)模式写入。
2.文件处理的相关方法
file 对象使用 open 函数来创建,下表列出了 file 对象常用的函数:
3.文件的存储模块
pickle模块
在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:
d = dict(name='Bob', age=20, score=88)
可以随时修改变量,比如把name改成'Bill',但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的'Bill'存储到磁盘上,下次重新运行程序,变量又被初始化为'Bob'。
我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。
序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。
反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。
Python提供了pickle模块来实现序列化。
首先,我们尝试把一个对象序列化并写入文件:
>>> import pickle >>> d = dict(name='Bob', age=20, score=88) >>> pickle.dumps(d) b'\x80\x03}q\x00(X\x03\x00\x00\x00ageq\x01K\x14X\x05\x00\x00\x00scoreq\x02KXX\x04\x00\x00\x00nameq\x03X\x03\x00\x00\x00Bobq\x04u.'
pickle.dumps()方法把任意对象序列化成一个bytes,然后,就可以把这个bytes写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:
>>> f = open('dump.txt', 'wb') >>> pickle.dump(d, f) >>> f.close()
看看写入的dump.txt文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。
当我们要把对象从磁盘读到内存时,可以先把内容读到一个bytes,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:
>>> f = open('dump.txt', 'rb') >>> d = pickle.load(f) >>> f.close() >>> d {'age': 20, 'score': 88, 'name': 'Bob'}
变量的内容又回来了!
当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。
Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。
marshal模块
Python的marshal模块,顾名思义也是负责在Python数值与二进制字节对象之间进行转换的。但是,marshal模块仅供Python解析器内部用作对象的序列化,不推荐开发人员使用该模块处理Python对象的序列化和反序列化。
marshal模块不是通用的序列化/反序列化模块,而是以读写.pyc文件中的Python代码为目的设计的。marshal模块提供的函数可以读写二进制对象为Python数值。这里的二进制对象是Python字节定义的独特二进制格式,与所在机器的体系结构无关。
load(file),从文件读取Python数值并返回该值loads(bytes),将读入的字节对象转换为Python数值
dump(value, file[, version]),将Python数值写入到文件
dumps(value[, version]),将读入的Python数值转换为一个字节对象
version,当前marshal模块使用的二进制格式的版本
事实上,要序列化或反序列化Python对象,建议使用pickle模块。如在RPC调用中对Python对象进行远程传输,则使用pickle模块。
如果要对Python对象进行持久化,则使用shelve模块。
4.JSON
JSON
如果我们要在不同的编程语言之间传递对象,就必须把对象序列化为标准格式,比如XML,但更好的方法是序列化为JSON,因为JSON表示出来就是一个字符串,可以被所有语言读取,也可以方便地存储到磁盘或者通过网络传输。JSON不仅是标准格式,并且比XML更快,而且可以直接在Web页面中读取,非常方便。
JSON表示的对象就是标准的JavaScript语言的对象,JSON和Python内置的数据类型对应如下:
Python内置的json模块提供了非常完善的Python对象到JSON格式的转换。我们先看看如何把Python对象变成一个JSON:
>>> import json >>> d = dict(name='Bob', age=20, score=88) >>> json.dumps(d) '{"age": 20, "score": 88, "name": "Bob"}'
dumps()方法返回一个str,内容就是标准的JSON。类似的,dump()方法可以直接把JSON写入一个file-like Object。
要把JSON反序列化为Python对象,用loads()或者对应的load()方法,前者把JSON的字符串反序列化,后者从file-like Object中读取字符串并反序列化:
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}' >>> json.loads(json_str) {'age': 20, 'score': 88, 'name': 'Bob'}
由于JSON标准规定JSON编码是UTF-8,所以我们总是能正确地在Python的str与JSON的字符串之间转换。
JSON进阶
Python的dict对象可以直接序列化为JSON的{},不过,很多时候,我们更喜欢用class表示对象,比如定义Student类,然后序列化:
import json class Student(object): def __init__(self, name, age, score): self.name = name self.age = age self.score = score s = Student('Bob', 20, 88) print(json.dumps(s))
运行代码,毫不留情地得到一个TypeError:
Traceback (most recent call last): ... TypeError: <__main__.Student object at 0x10603cc50> is not JSON serializable
错误的原因是Student对象不是一个可序列化为JSON的对象。
如果连class的实例对象都无法序列化为JSON,这肯定不合理!
别急,仔细看看dumps()方法的参数列表,可以发现,除了第一个必须的obj参数外,dumps()方法还提供了一大堆的可选参数:
https://docs.python.org/3/library/json.html#json.dumps
这些可选参数就是让我们来定制JSON序列化。前面的代码之所以无法把Student类实例序列化为JSON,是因为默认情况下,dumps()方法不知道如何将Student实例变为一个JSON的{}对象。
可选参数default就是把任意一个对象变成一个可序列为JSON的对象,我们只需要为Student专门写一个转换函数,再把函数传进去即可:
def student2dict(std): return { 'name': std.name, 'age': std.age, 'score': std.score }
这样,Student实例首先被student2dict()函数转换成dict,然后再被顺利序列化为JSON:
>>> print(json.dumps(s, default=student2dict)) {"age": 20, "name": "Bob", "score": 88}
不过,下次如果遇到一个Teacher类的实例,照样无法序列化为JSON。我们可以偷个懒,把任意class的实例变为dict:
print(json.dumps(s, default=lambda obj: obj.__dict__))
因为通常class的实例都有一个__dict__属性,它就是一个dict,用来存储实例变量。也有少数例外,比如定义了__slots__的class。
同样的道理,如果我们要把JSON反序列化为一个Student对象实例,loads()方法首先转换出一个dict对象,然后,我们传入的object_hook函数负责把dict转换为Student实例:
def dict2student(d): return Student(d['name'], d['age'], d['score'])
运行结果如下:
>>> json_str = '{"age": 20, "score": 88, "name": "Bob"}' >>> print(json.loads(json_str, object_hook=dict2student))
打印出的是反序列化的Student实例对象。