如何将照片美化,DPED机器学习开源项目安装使用 | 机器学习

简介: 如何将照片美化,DPED机器学习开源项目安装使用 | 机器学习

前言

最近发现了一个可以把照片美化的项目,自己玩了玩,挺有意思的,分享一下。

Github地址:DPED项目地址

下面来看看项目怎么玩?先放一些项目给出的效果图。可以看出照片更明亮好看了。

 image.png

环境部署

项目结构

下面是项目的原始结构:

image.png


tensorflow安装

按照项目的说明,我们需要安装tensorflow以及一些必要的库。


image.png



如果安装gpu版本的tensorflow需要对照一下


tensorflow官方对照地址:TensorFlow官方CUDA版本对照


我的cuda是11.1的版本,按照tensorflow后还是缺少部分dll,如果有相同问题的,可以用我提供的资源包: https://pan.baidu.com/s/1IUm8xz5dhh8iW_bLWfihPQ  提取码:TUAN。


缺少哪个dll,直接复制到你的NVIDIA GPU Computing Toolkit目录对应cuda的bin目录下。


image.png



按照自己的版本来,我的tensorflow命令如下:


pip install tensorflow-gpu==2.4.2 -i https://pypi.douban.com/simple

pip install tf-nightly -i https://pypi.douban.com/simple

其他依赖安装

Pillow, scipy, numpy, imageio安装


pip install Pillow -i https://pypi.douban.com/simple

pip install scipy -i https://pypi.douban.com/simple

pip install numpy -i https://pypi.douban.com/simple

pip install imageio -i https://pypi.douban.com/simple

VGG-19下载

因为模型文件太大,github的项目中无法上传这么大的文件,作者让我们自己下。



image.png

我把DPED的资源包统一打包了,也可以从我的云盘下载, 放到项目的vgg_pretrained目录下。下图是资源包的目录


image.png



资源包地址: https://pan.baidu.com/s/1IUm8xz5dhh8iW_bLWfihPQ  提取码:TUAN。


项目运行

项目需要的环境我们都装好了,我们跳过训练的部分,测试model的方法官方给出了命令。


image.png


准备图片素材

我准备了几张图,就不全展示了,展示其中的一张。


屏幕快照 2022-06-08 下午3.31.07.png

按照项目的要求,需要放在对应的目录下。


image.png


测试效果

执行命令


python test_model.py model=iphone_orig test_subset=full resolution=orig use_gpu=true

执行过程

(tensorflow) C:\Users\yi\PycharmProjects\DPED>python test_model.py model=iphone_orig test_subset=full resolution=orig use_gpu=true
2021-11-27 23:42:57.922965: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
2021-11-27 23:43:00.532645: I tensorflow/core/platform/cpu_feature_guard.cc:142] This TensorFlow binary is optimized with oneAPI Deep Neural Network Library (oneDNN) to
use the following CPU instructions in performance-critical operations:  AVX2
To enable them in other operations, rebuild TensorFlow with the appropriate compiler flags.
2021-11-27 23:43:00.535946: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library nvcuda.dll
2021-11-27 23:43:00.559967: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1
coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
2021-11-27 23:43:00.560121: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
2021-11-27 23:43:00.577706: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
2021-11-27 23:43:00.577812: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
2021-11-27 23:43:00.588560: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
2021-11-27 23:43:00.591950: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
2021-11-27 23:43:00.614412: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
2021-11-27 23:43:00.624267: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
2021-11-27 23:43:00.626309: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
2021-11-27 23:43:00.626481: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2021-11-27 23:43:01.112598: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-11-27 23:43:01.112756: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267]      0
2021-11-27 23:43:01.113098: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0:   N
2021-11-27 23:43:01.113463: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6720 MB
 memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)
2021-11-27 23:43:01.114296: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
WARNING:tensorflow:From C:\Users\yi\AppData\Roaming\Python\Python36\site-packages\tensorflow\python\compat\v2_compat.py:96: disable_resource_variables (from tensorflow.p
ython.ops.variable_scope) is deprecated and will be removed in a future version.
Instructions for updating:
non-resource variables are not supported in the long term
2021-11-27 23:43:01.478512: I tensorflow/compiler/jit/xla_cpu_device.cc:41] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-11-27 23:43:01.479339: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1
coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
2021-11-27 23:43:01.479747: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
2021-11-27 23:43:01.480519: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
2021-11-27 23:43:01.480927: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
2021-11-27 23:43:01.481155: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
2021-11-27 23:43:01.481568: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
2021-11-27 23:43:01.481823: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
2021-11-27 23:43:01.482188: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
2021-11-27 23:43:01.482416: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
2021-11-27 23:43:01.482638: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2021-11-27 23:43:01.482959: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1720] Found device 0 with properties:
pciBusID: 0000:01:00.0 name: GeForce GTX 1070 computeCapability: 6.1
coreClock: 1.759GHz coreCount: 15 deviceMemorySize: 8.00GiB deviceMemoryBandwidth: 238.66GiB/s
2021-11-27 23:43:01.483077: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudart64_110.dll
2021-11-27 23:43:01.483254: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
2021-11-27 23:43:01.483426: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
2021-11-27 23:43:01.483638: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cufft64_10.dll
2021-11-27 23:43:01.483817: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library curand64_10.dll
2021-11-27 23:43:01.484052: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusolver64_10.dll
2021-11-27 23:43:01.484250: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cusparse64_11.dll
2021-11-27 23:43:01.484433: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
2021-11-27 23:43:01.484662: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1862] Adding visible gpu devices: 0
2021-11-27 23:43:01.484841: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1261] Device interconnect StreamExecutor with strength 1 edge matrix:
2021-11-27 23:43:01.484984: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1267]      0
2021-11-27 23:43:01.485152: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1280] 0:   N
2021-11-27 23:43:01.485395: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1406] Created TensorFlow device (/job:localhost/replica:0/task:0/device:GPU:0 with 6720 MB
 memory) -> physical GPU (device: 0, name: GeForce GTX 1070, pci bus id: 0000:01:00.0, compute capability: 6.1)
2021-11-27 23:43:01.485565: I tensorflow/compiler/jit/xla_gpu_device.cc:99] Not creating XLA devices, tf_xla_enable_xla_devices not set
2021-11-27 23:43:01.518135: I tensorflow/compiler/mlir/mlir_graph_optimization_pass.cc:196] None of the MLIR optimization passes are enabled (registered 0 passes)
Testing original iphone model, processing image 3.jpg
2021-11-27 23:43:01.863678: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cudnn64_8.dll
2021-11-27 23:43:02.517063: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0
2021-11-27 23:43:02.632790: I tensorflow/core/platform/windows/subprocess.cc:308] SubProcess ended with return code: 0
2021-11-27 23:43:03.210892: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublas64_11.dll
2021-11-27 23:43:03.509052: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library cublasLt64_11.dll
Lossy conversion from float32 to uint8. Range [-0.06221151351928711, 1.0705437660217285]. Convert image to uint8 prior to saving to suppress this warning.
Lossy conversion from float32 to uint8. Range [-0.06221151351928711, 1.0705437660217285]. Convert image to uint8 prior to saving to suppress this warning.
Testing original iphone model, processing image 4.jpg
Lossy conversion from float32 to uint8. Range [-0.05176264047622681, 1.0500218868255615]. Convert image to uint8 prior to saving to suppress this warning.
Lossy conversion from float32 to uint8. Range [-0.05176264047622681, 1.0500218868255615]. Convert image to uint8 prior to saving to suppress this warning.
Testing original iphone model, processing image 5.jpg
Lossy conversion from float32 to uint8. Range [-0.03344374895095825, 1.0417983531951904]. Convert image to uint8 prior to saving to suppress this warning.
Lossy conversion from float32 to uint8. Range [-0.03344374895095825, 1.0417983531951904]. Convert image to uint8 prior to saving to suppress this warning.
Testing original iphone model, processing image 6.jpg
Lossy conversion from float32 to uint8. Range [-0.03614246845245361, 1.063475251197815]. Convert image to uint8 prior to saving to suppress this warning.
Lossy conversion from float32 to uint8. Range [-0.03614246845245361, 1.063475251197815]. Convert image to uint8 prior to saving to suppress this warning.

项目会生成前后对比图以及最终结果图。


前后效果图,左边为原始图,右边为对比图。


屏幕快照 2022-06-08 下午3.34.51.png



结果图如下



屏幕快照 2022-06-08 下午3.34.42.png


可以明显的看出,新图已经明亮了许多,色彩也变的比较鲜明了,效果还是很不错的。


总结

项目整体没什么毛病,只是如果要单独处理一张图片还需要对项目魔改一下。我下一篇文章会稍微魔改一下,简化项目结构,处理单张图片。


分享:


       有花不语,凌风傲雪。有花不言,自开自凋零。有花幽幽,芳华尽蚀人间。——《虫师》


如果本文对你有用的话,给我点个赞吧,谢谢!



相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
12天前
|
存储 人工智能 云栖大会
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
【云栖大会】阿里云设计中心 × 教育部协同育人项目成果展,PAI ArtLab助力高校AIGC教育新路径
|
14天前
|
人工智能 监控 开发者
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
阿里云PAI发布DeepRec Extension,打造稳定高效的分布式训练,并宣布开源!
|
16天前
|
人工智能 自然语言处理 物联网
阿里万相重磅开源,人工智能平台PAI一键部署教程来啦
阿里云视频生成大模型万相2.1(Wan)重磅开源!Wan2.1 在处理复杂运动、还原真实物理规律、提升影视质感以及优化指令遵循方面具有显著的优势,轻松实现高质量的视频生成。同时,万相还支持业内领先的中英文文字特效生成,满足广告、短视频等领域的创意需求。阿里云人工智能平台 PAI-Model Gallery 现已经支持一键部署阿里万相重磅开源的4个模型,可获得您的专属阿里万相服务。
|
23天前
|
人工智能 Linux API
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
Omnitool 是一款开源的 AI 桌面环境,支持本地运行,提供统一交互界面,快速接入 OpenAI、Stable Diffusion、Hugging Face 等主流 AI 平台,具备高度扩展性。
368 94
Omnitool:开发者桌面革命!开源神器一键整合ChatGPT+Stable Diffusion等主流AI平台,本地运行不联网
|
24天前
|
机器学习/深度学习 人工智能 并行计算
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
Unsloth 是一款开源的大语言模型微调工具,支持 Llama-3、Mistral、Phi-4 等主流 LLM,通过优化计算步骤和手写 GPU 内核,显著提升训练速度并减少内存使用。
290 3
Unsloth:学生党福音!开源神器让大模型训练提速10倍:单GPU跑Llama3,5小时变30分钟
|
4月前
|
机器学习/深度学习 人工智能 监控
AutoTrain:Hugging Face 开源的无代码模型训练平台
AutoTrain 是 Hugging Face 推出的开源无代码模型训练平台,旨在简化最先进模型的训练过程。用户无需编写代码,只需上传数据即可创建、微调和部署自己的 AI 模型。AutoTrain 支持多种机器学习任务,并提供自动化最佳实践,包括超参数调整、模型验证和分布式训练。
393 4
AutoTrain:Hugging Face 开源的无代码模型训练平台
|
4月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法
在数据驱动时代,A/B 测试成为评估机器学习项目不同方案效果的重要方法。本文介绍 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,同时提供 Python 实现示例,强调其在确保项目性能和用户体验方面的关键作用。
85 6
|
4月前
|
机器学习/深度学习 算法 UED
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段
在数据驱动时代,A/B 测试成为评估机器学习项目效果的重要手段。本文介绍了 A/B 测试的基本概念、步骤及其在模型评估、算法改进、特征选择和用户体验优化中的应用,强调了样本量、随机性和时间因素的重要性,并展示了 Python 在 A/B 测试中的具体应用实例。
61 1
|
4月前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
405 1
|
5月前
|
JSON 测试技术 API
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码
阿里云PAI-Stable Diffusion开源代码浅析之(二)我的png info怎么有乱码

热门文章

最新文章