【BP分类】基于鸟群算法优化BP神经网络实现数据分类附matlab代码

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【BP分类】基于鸟群算法优化BP神经网络实现数据分类附matlab代码

1 简介

BSA 算法优化 BP 神经网络的基本思想是: 利 用 BSA 算法的全局搜索能力, 优化 BP 神经网络初始的权值和阈值, 也就是决策变量, 其中每一组决策变量均包含在鸟群个体所处的空间位置中. 然后, 通过适应度函数来衡量个体所处空间位置的优劣度, 并利用鸟群觅食过程中的觅食行为、警戒行为和飞行行为等策略不断更新个体空间位置, 直至获取最佳的个体空间位置, 即获得待优化问题的最佳决策变量

BSA-BP 算法预测 PMV 指标主要包括以下几个部分: 确定训练样本数据、设计 BP 神经网络结构、利用 BSA 算法优化 BP 神经网络初始的权值和阈值、训练优化后的网络. 具体实现步骤如下:

步骤 1. 确定训练样本数据. 确定所需输入变量的取值范围; 然后, 根据 PMV 指标的数学模型, 利用MATLAB 软件编辑 PMV 指标的计算程序, 获取相当数量的样本数据; 最后, 经过预处理, 作为 BP 神经网络的训练样本和测试样本数据.

步骤 2. 设计 BP 神经网络结构. 依据标准 BP 神经网络模型以及 PMV 指标的数学模型, 确定 BP 神经网络的层数、每层的神经元数, 以及其他参数.

步骤 3. 确定 BSA 算法中各参数. 包括初始化种群规模 N、搜索空间维数 D、最大迭代次数 T、飞行间隔 FQ、觅食概率 P、常量 C、S、a1、a2、FL 以及随机初始化鸟群个体空间位置 xti.

步骤 4. 计算 BSA 算法的适应度函数值, 将样本的均方误差作为适应度函数, 找到最小的适应度值, 并保留当前最好个体空间位置. 判断算法终止条件是否满足, 若满足则转至步骤 6, 否则执行步骤

5.步骤 5. BSA 算法优化 BP 神经网络初始的权值和阈值. 依据 BSA 算法的步骤, 不断迭代进行寻优, 直到迭代停止, 输出全局最优值, 也就是最优网络初始的权值和阈值, 并将其赋给 BP 神经网络.

步骤 6. 训练 BSA 算法优化后的 BP 神经网络. 网络经训练结束后, 将得到最佳的 PMV 指标预测模型.上面所述的实现步骤可见图 3

2 部分代码

% ------------------------------------------------------------------------% Bird Swarm Algorithm (BSA) (demo)% This is a simple demo version only implemented the basic idea of BSA for% solving the unconstrained problem, namely Sphere function.%% The details about BSA are illustratred in the following paper.% Xian-Bing Meng, et al (2015): A new bio-inspXred optimisation algorithm:% Bird Swarm Algorithm, Journal of Experimental & Theoretical% Artificial Intelligence, DOI: 10.1080/0952813X.2015.1042530%% The parameters in BSA are presented as follows.% FitFunc    % The objective function% M          % Maxmimal generations (iterations)% pop        % Population size% dim        % Dimension% FQ         % The frequency of birds' flight behaviours% c1         % Cognitive accelerated coefficient% c2         % Social accelerated coefficient% a1, a2     % Two paramters which are related to the indirect and direct%              effect on the birds' vigilance bahaviors.%% Using the default value, BSA can be executed using the following code.% [ bestX, fMin ] = BSA% ------------------------------------------------------------------------% Main programsfunction [ bestX, fMin ,yy] = BSA( FitFunc, M, pop, dim, FQ, c1, c2, a1, a2 )% Display helphelp BSA.m%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% set the default parameters% set the parameterslb= -100*ones( 1,dim );   % Lower boundsub= 100*ones( 1,dim );    % Upper bounds%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%Initializationfor i = 1 : pop    x( i, : ) = lb + (ub - lb) .* rand( 1, dim );    fit( i ) = FitFunc( x( i, : ) );endpFit = fit; % The individual's best fitness valuepX = x;     % The individual's best position corresponding to the pFit[ fMin, bestIndex ] = min( fit );  % fMin denotes the global optimum% bestX denotes the position corresponding to fMinbestX = x( bestIndex, : );%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Start the iteration.for iteration = 1 : M        prob = rand( pop, 1 ) .* 0.2 + 0.8;%The probability of foraging for food        if( mod( iteration, FQ ) ~= 0 )        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        % Birds forage for food or keep vigilance        sumPfit = sum( pFit );        meanP = mean( pX );        for i = 1 : pop            if rand < prob(i)                x( i, : ) = x( i, : ) + c1 * rand.*(bestX - x( i, : ))+ ...                    c2 * rand.*( pX(i,:) - x( i, : ) );            else                person = randiTabu( 1, pop, i, 1 );                                x( i, : ) = x( i, : ) + rand.*(meanP - x( i, : )) * a1 * ...                    exp( -pFit(i)/( sumPfit + realmin) * pop ) + a2 * ...                    ( rand*2 - 1) .* ( pX(person,:) - x( i, : ) ) * exp( ...                    -(pFit(person) - pFit(i))/(abs( pFit(person)-pFit(i) )...                    + realmin) * pFit(person)/(sumPfit + realmin) * pop );            end                        x( i, : ) = Bounds( x( i, : ), lb, ub );            fit( i ) = FitFunc( x( i, : ) );        end        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%            else        FL = rand( pop, 1 ) .* 0.4 + 0.5;    %The followed coefficient                %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        % Divide the bird swarm into two parts: producers and scroungers.        [ans, minIndex ] = min( pFit );        [ans, maxIndex ] = max( pFit );        choose = 0;        if ( minIndex < 0.5*pop && maxIndex < 0.5*pop )            choose = 1;        end        if ( minIndex > 0.5*pop && maxIndex < 0.5*pop )            choose = 2;        end        if ( minIndex < 0.5*pop && maxIndex > 0.5*pop )            choose = 3;        end        if ( minIndex > 0.5*pop && maxIndex > 0.5*pop )            choose = 4;        end        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        if choose < 3            for i = (pop/2+1) : pop                x( i, : ) = x( i, : ) * ( 1 + randn );                x( i, : ) = Bounds( x( i, : ), lb, ub );                fit( i ) = FitFunc( x( i, : ) );            end            if choose == 1                x( minIndex,: ) = x( minIndex,: ) * ( 1 + randn );                x( minIndex, : ) = Bounds( x( minIndex, : ), lb, ub );                fit( minIndex ) = FitFunc( x( minIndex, : ) );            end            for i = 1 : 0.5*pop                if choose == 2 || minIndex ~= i                    person = randi( [(0.5*pop+1), pop ], 1 );                    x( i, : ) = x( i, : ) + (pX(person, :) - x( i, : )) * FL( i );                    x( i, : ) = Bounds( x( i, : ), lb, ub );    end% End of the main program%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% The following functions are associated with the main program%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% This function is the objective function

3 仿真结果

4 参考文献

[1]郭彤颖, 陈露. 基于鸟群算法优化BP神经网络的热舒适度预测[J]. 计算机系统应用, 2018, 27(4):5.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。

热门文章

最新文章