【经济调度】基于蚁狮算法解决经济调度优化问题附matlab代码

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 【经济调度】基于蚁狮算法解决经济调度优化问题附matlab代码

 1 简介

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

image.gif编辑

2 部分代码

%_________________________________________________________________________%clc;clear;close all;warning off;% Change these details with respect to your problem%%%%%%%%%%%%%%% This program solves the economic dispatch with Bmn coefficients by MOALO% Algorithm % The data matrix should have 5 columns of fuel cost coefficients and plant  limits.% 1.a ($/MW^2) 2. b $/MW 3. c ($) 4.lower lomit(MW) 5.Upper limit(MW)%no of rows denote the no of plants(n)data=[0.007  7  240  100  5000.0095  10  200  50  2000.009  8.5  220  80  3000.009  11  200  50  1500.008  10.5  220  50  2000.0075  12  120  50  120];% Loss coefficients it should be squarematrix of size nXn where n is the no% of plantsB=1e-4*[0.14  0.17  0.15  0.19  0.26  0.220.17  0.6  0.13  0.16  0.15  0.20.15  0.13  0.65  0.17  0.24  0.190.19  0.16  0.17  0.71  0.3  0.250.26  0.15  0.24  0.3  0.69  0.320.22  0.2  0.19  0.25  0.32  0.85];% Demand (MW)Pd=700;ObjectiveFunction=@eldnba;dim=length(data(:,1));;lb=0;ub=1;obj_no=1;if size(ub,2)==1    ub=ones(1,dim)*ub;    lb=ones(1,dim)*lb;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Initial parameters of the MODA algorithmmax_iter=100;N=100;ArchiveMaxSize=100;Archive_X=zeros(100,dim);Archive_F=ones(100,obj_no)*inf;Archive_member_no=0;r=(ub-lb)/2;V_max=(ub(1)-lb(1))/10;Elite_fitness=inf*ones(1,obj_no);Elite_position=zeros(dim,1);Ant_Position=initialization(N,dim,ub,lb);fitness=zeros(N,2);V=initialization(N,dim,ub,lb);iter=0;position_history=zeros(N,max_iter,dim);for iter=1:max_iter        for i=1:N %Calculate all the objective values first        Particles_F(i,:)=ObjectiveFunction(Ant_Position(:,i)');        if dominates(Particles_F(i,:),Elite_fitness)            Elite_fitness=Particles_F(i,:);            Elite_position=Ant_Position(:,i);        end    end        [Archive_X, Archive_F, Archive_member_no]=UpdateArchive(Archive_X, Archive_F, Ant_Position, Particles_F, Archive_member_no);        if Archive_member_no>ArchiveMaxSize        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);        [Archive_X, Archive_F, Archive_mem_ranks, Archive_member_no]=HandleFullArchive(Archive_X, Archive_F, Archive_member_no, Archive_mem_ranks, ArchiveMaxSize);    else        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);    end        Archive_mem_ranks=RankingProcess(Archive_F, ArchiveMaxSize, obj_no);        % Chose the archive member in the least population area as arrtactor    % to improve coverage    index=RouletteWheelSelection(1./(Archive_mem_ranks+1e-20));    if index==-1        index=1;    end    Elite_fitness=Archive_F(index,:);    Elite_position=Archive_X(index,:)';        Random_antlion_fitness=Archive_F(1,:);    Random_antlion_position=Archive_X(1,:)';        for i=1:N                index=0;        neighbours_no=0;                RA=Random_walk_around_antlion(dim,max_iter,lb,ub, Random_antlion_position',iter);                [RE]=Random_walk_around_antlion(dim,max_iter,lb,ub, Elite_position',iter);                Ant_Position(:,i)=(RE(iter,:)'+RA(iter,:)')/2;                                Flag4ub=Ant_Position(:,i)>ub';        Flag4lb=Ant_Position(:,i)<lb';        Ant_Position(:,i)=(Ant_Position(:,i).*(~(Flag4ub+Flag4lb)))+ub'.*Flag4ub+lb'.*Flag4lb;           end    display(['At the iteration ', num2str(iter), ' there are ', num2str(Archive_member_no), ' non-dominated solutions in the archive']); K(iter)=Elite_fitness; end[F P Pl]=eldnba(Elite_position)plot(K)gridtitle('Iteration vs Best Function Value');xlabel('Iteration')ylabel('Function Value')

3 仿真结果

image.gif编辑

4 参考文献

[1]彭暄惠, 陈才学, 熊志刚,等. 一种基于改进蚁狮算法的含电动汽车参与的微电网优化调度方法:.

博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。

部分理论引用网络文献,若有侵权联系博主删除。

5 代码下载

image.gif编辑


相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
9月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
9月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度

热门文章

最新文章