python实现KNN(最近邻)算法

简介: python实现KNN(最近邻)算法

KNN(近邻)算法

KNN算法可能是标准数据挖掘算法中最为直观的一种。为了对新个体进行分类,它查找训练集,找到与新个体最相似的那些个体,看看这些个体大多属于哪个类别,就把新个体分到哪个类别
KNN算法几乎可以对任何数据集进行分类,但是,要计算数据集中每两个个体之间的距离,计算量很大

数据集选取

本次数据集选用电离数据,该数据集每行有35个值,前34个为天线采集的数据,最后一个值不是“g”,就是“b”,表示数据的好与坏,即是否提供了有价值的信息
我们要做的就是使用KNN算法,自动判断这些数据的好坏
以下为部分数据视图

1,0,0.47337,0.19527,0.06213,-0.18343,0.62316,0.01006,0.45562,-0.04438,0.56509,0.01775,0.44675,0.27515,0.71598,-0.03846,0.55621,0.12426,0.41420,0.11538,0.52767,0.02842,0.51183,-0.10651,0.47929,-0.02367,0.46514,0.03259,0.53550,0.25148,0.31953,-0.14497,0.34615,-0.00296,g
1,0,0.59887,0.14689,0.69868,-0.13936,0.85122,-0.13936,0.80979,0.02448,0.50471,0.02825,0.67420,-0.04520,0.80791,-0.13748,0.51412,-0.24482,0.81544,-0.14313,0.70245,-0.00377,0.33333,0.06215,0.56121,-0.33145,0.61444,-0.16837,0.52731,-0.02072,0.53861,-0.31262,0.67420,-0.22034,g
1,0,0.84713,-0.03397,0.86412,-0.08493,0.81953,0,0.73673,-0.07643,0.71975,-0.13588,0.74947,-0.11677,0.77495,-0.18684,0.78132,-0.21231,0.61996,-0.10191,0.79193,-0.15711,0.89384,-0.03397,0.84926,-0.26115,0.74115,-0.23312,0.66242,-0.22293,0.72611,-0.37792,0.65817,-0.24841,g
1,0,0.87772,-0.08152,0.83424,0.07337,0.84783,0.04076,0.77174,-0.02174,0.77174,-0.05707,0.82337,-0.10598,0.67935,-0.00543,0.88043,-0.20924,0.83424,0.03261,0.86413,-0.05978,0.97283,-0.27989,0.85054,-0.18750,0.83705,-0.10211,0.85870,-0.03261,0.78533,-0.10870,0.79076,-0.00543,g
1,0,0.74704,-0.13241,0.53755,0.16996,0.72727,0.09486,0.69565,-0.11067,0.66798,-0.23518,0.87945,-0.19170,0.73715,0.04150,0.63043,-0.00395,0.63636,-0.11858,0.79249,-0.25296,0.66403,-0.28656,0.67194,-0.10474,0.61847,-0.12041,0.60079,-0.20949,0.37549,0.06917,0.61067,-0.01383,g
1,0,0.46785,0.11308,0.58980,0.00665,0.55432,0.06874,0.47894,-0.13969,0.52993,0.01330,0.63858,-0.16186,0.67849,-0.03326,0.54545,-0.13525,0.52993,-0.04656,0.47894,-0.19512,0.50776,-0.13525,0.41463,-0.20177,0.53930,-0.11455,0.59867,-0.02882,0.53659,-0.11752,0.56319,-0.04435,g
1,0,0.88116,0.27475,0.72125,0.42881,0.61559,0.63662,0.38825,0.90502,0.09831,0.96128,-0.20097,0.89200,-0.35737,0.77500,-0.65114,0.62210,-0.78768,0.45535,-0.81856,0.19095,-0.83943,-0.08079,-0.78334,-0.26356,-0.67557,-0.45511,-0.54732,-0.60858,-0.30512,-0.66700,-0.19312,-0.75597,g
1,0,0.93147,0.29282,0.79917,0.55756,0.59952,0.71596,0.26203,0.92651,0.04636,0.96748,-0.23237,0.95130,-0.55926,0.81018,-0.73329,0.62385,-0.90995,0.36200,-0.92254,0.06040,-0.93618,-0.19838,-0.83192,-0.46906,-0.65165,-0.69556,-0.41223,-0.85725,-0.13590,-0.93953,0.10007,-0.94823,g
1,0,0.88241,0.30634,0.73232,0.57816,0.34109,0.58527,0.05717,1,-0.09238,0.92118,-0.62403,0.71996,-0.69767,0.32558,-0.81422,0.41195,-1,-0.00775,-0.78973,-0.41085,-0.76901,-0.45478,-0.57242,-0.67605,-0.31610,-0.81876,-0.02979,-0.86841,0.25392,-0.82127,0.00194,-0.81686,g
1,0,0.83479,0.28993,0.69256,0.47702,0.49234,0.68381,0.21991,0.86761,-0.08096,0.85011,-0.35558,0.77681,-0.52735,0.58425,-0.70350,0.31291,-0.75821,0.03939,-0.71225,-0.15317,-0.58315,-0.39168,-0.37199,-0.52954,-0.16950,-0.60863,0.08425,-0.61488,0.25164,-0.48468,0.40591,-0.35339,g
1,0,0.92870,0.33164,0.76168,0.62349,0.49305,0.84266,0.21592,0.95193,-0.13956,0.96167,-0.47202,0.83590,-0.70747,0.65490,-0.87474,0.36750,-0.91814,0.05595,-0.89824,-0.26173,-0.73969,-0.54069,-0.50757,-0.74735,-0.22323,-0.86122,0.07810,-0.87159,0.36021,-0.78057,0.59407,-0.60270,g

运行算法

import numpy as np
import csv
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split

# 新建特征数据,默认为float类型
X = np.zeros((351, 34), dtype="float")
# 新建类别数据
y = np.zeros((351,), dtype="bool")

# 读取数据集并且赋值
with open("ionosphere.data", "r") as input_file:
    reader = csv.reader(input_file)
    for i, row in enumerate(reader):
        data = [float(datum) for datum in row[:-1]]
        X[i] = data
        y[i] = row[-1] == 'g'


# 对数据进行分割,创建训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=14)

# 建立KNN模型
estimator = KNeighborsClassifier()
# 使用训练数据进行训练
estimator.fit(X_train, y_train)
# 用测试集测试算法,评估它在测试集上的表现
y_predicted = estimator.predict(X_test)
# 查看正确率
accuracy = np.mean(y_test == y_predicted) * 100
print("{:.1f}".format(accuracy))

运行结果如下:

86.4%

交叉检验

在上述代码中,我们把数据集随机切分为训练集和测试集,用训练集训练算法,在测试集上评估效果。但是由于是随机分配,且只测试一次,所以会存在偶然性。
交叉检验能解决上述一次性测试带来的问题。他的实现方式就是对数据集进行多次切分,且每次切分都要保证与上次切分的不一样。还要确保每条数据都只能用来测试一次算法描述如下:

  1. 将整个数据集分为几个部分
  2. 对每一部分执行以下操作
    (1)、将其中一部分用作当前测试集
    (2)、用剩余部分训练算法
    (3)、在当前测试集上测试算法
  3. 记录每次得分及平均分
  4. 在上述过程中,每条数据只能在测试集出现一次,以减少(但不能完全规避)运气成分

sklearn库中提供了一个辅助函数 cross_val_score 实现了上述交叉检验步骤

from sklearn.model_selection import cross_val_score

# 进行交叉检验
scores = cross_val_score(estimator, X, y, scoring="accuracy")
# 求平均得分
average_accurancy = np.mean(scores) * 100
print("{:.1f}".format(average_accurancy))

注:此段代码接上段代码,运行结果如下:

82.3%

结果为82.3%,说明训练集和测试集的切分对于算法的精确度有一定影响,接下来我们通过调整参数来提高算法的精确度

设置参数

几乎所有的数据挖掘算法都可以设置参数,这样做的好处是可以增强算法的泛化能力。参数的设置可直接影响算法的精确度,选取参数与数据集的特征有关。

KNN算法有多个参数,最重要的是选取多少个近邻作为预测依据,接下来通过设置不同的参数来进行多次试验,观察不同的参数值所带来的结果之间的差异。

# 保存不同参数下的平均分
avg_socre = []
# 参数从1-20
para = list(range(1, 21))
# 对每个参数进行交叉检验,将结果保存到列表
for o in para:
    estimator = KNeighborsClassifier(n_neighbors=o)
    score = cross_val_score(estimator, X, y, scoring="accuracy")
    avg_socre.append(np.mean(score))
from matplotlib import pyplot as plt
# 可视化处理
plt.plot(para, avg_socre, "-o")
plt.show()

结果如图:
这里写图片描述

从上图可以看出,随着参数的数值增大,算法的正确率却在不断下降

目录
相关文章
|
1天前
|
机器学习/深度学习 人工智能 算法
【机器学习】K-means和KNN算法有什么区别?
【5月更文挑战第11天】【机器学习】K-means和KNN算法有什么区别?
|
2天前
|
数据采集 算法 数据可视化
python实现时序平滑算法SG滤波器
python实现时序平滑算法SG滤波器
|
2天前
|
机器学习/深度学习 存储 算法
用kNN算法诊断乳腺癌--基于R语言
用kNN算法诊断乳腺癌--基于R语言
|
6天前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
|
6天前
|
算法 机器人 Python
Python实现教程:平面最短路径算法
Python实现教程:平面最短路径算法
13 1
|
12天前
|
机器学习/深度学习 运维 算法
【Python机器学习专栏】异常检测算法在Python中的实践
【4月更文挑战第30天】本文介绍了异常检测的重要性和在不同领域的应用,如欺诈检测和网络安全。文章概述了四种常见异常检测算法:基于统计、距离、密度和模型的方法。在Python实践中,使用scikit-learn库展示了如何实现这些算法,包括正态分布拟合、K-means聚类、局部异常因子(LOF)和孤立森林(Isolation Forest)。通过计算概率密度、距离、LOF值和数据点的平均路径长度来识别异常值。
|
12天前
|
机器学习/深度学习 数据可视化 算法
【Python机器学习专栏】t-SNE算法在数据可视化中的应用
【4月更文挑战第30天】t-SNE算法是用于高维数据可视化的非线性降维技术,通过最小化Kullback-Leibler散度在低维空间保持数据点间关系。其特点包括:高维到二维/三维映射、保留局部结构、无需预定义簇数量,但计算成本高。Python中可使用`scikit-learn`的`TSNE`类实现,结合`matplotlib`进行可视化。尽管计算昂贵,t-SNE在揭示复杂数据集结构上极具价值。
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
3天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
3天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
12 1