Multi-Scale Convolutional Neural Networks for Time Series Classification

简介: 针对现有时间序列分类方法的特征提取与分类过程分离,且无法提取存在于不同时间尺度序列的不同特征的问题,作者提出MCNN模型。对于单一时间序列输入,进行降采样和滑动平均等变化,产生多组长度不同的时间序列,并在多组时间序列上进行卷积,提取不同时间尺度序列的特征。

keywords: 时间序列处理; 深度学习; keras


针对现有时间序列分类方法的特征提取与分类过程分离,且无法提取存在于不同时间尺度序列的不同特征的问题,作者提出MCNN模型。

对于单一时间序列输入,进行降采样和滑动平均等变化,产生多组长度不同的时间序列,并在多组时间序列上进行卷积,提取不同时间尺度序列的特征。


4.png

image


  • Original 表示原始时间序列
  • Multi-Frequency 表示对原始数据滑动平均后的序列

5.png
image


  • Multi-Scale 表示对原始数据降采样后的序列
    6.png
    image


通过降采样的变换,实现在不同时间尺度的序列上的特征提取。
通过滑动平均的变换,实现对噪音的抵抗性。


加载数据



论文中使用了UCR数据集中的44个任务,首先,根据数据集任务名获取数据集的存储路径。

def get_datasets_path(base_path):
    datasets_used = ['Adiac', 'Beef', 'CBF', 'ChlorineConcentration', 'CinC_ECG_torso', 'Coffee', 'Cricket_X', 'Cricket_Y',
                'Cricket_Z', 'DiatomSizeReduction', 'ECGFiveDays', 'FaceAll', 'FaceFour', 'FacesUCR', '50words',
                'FISH', 'Gun_Point', 'Haptics', 'InlineSkate', 'ItalyPowerDemand', 'Lighting2', 'Lighting7', 'MALLAT',
                'MedicalImages', 'MoteStrain', 'NonInvasiveFatalECG_Thorax1', 'NonInvasiveFatalECG_Thorax2', 'OliveOil',
                'OSULeaf', 'SonyAIBORobotSurface', 'SonyAIBORobotSurfaceII', 'StarLightCurves', 'SwedishLeaf',
                'Symbols',
                'synthetic_control', 'Trace', 'TwoLeadECG', 'Two_Patterns', 'UWaveGestureLibrary_X',
                'UWaveGestureLibrary_Y', 'UWaveGestureLibrary_Z', 'wafer', 'WordSynonyms', 'yoga']
    data_list = os.listdir(base_path)
    return ["%s/%s/%s_" % (base_path, data, data) for data in datasets_used if data in data_list]


数据集分为TRAIN和TEST两个文件,分别存储训练集和测试集。作者使用了一种增加数据规模的技巧,使用滑动窗口在时间序列上截取数据,并共享同一个类别标签,同时增加了测试集和训练集的规模。

def data_augmentation(feature, label, ws):
    seq_len = feature.shape[1]
    aug_feature, aug_label = feature[:, :ws], label
    for i in range(1, seq_len-ws+1):
        _feature = feature[:, i:i+ws]
        aug_feature = np.concatenate((aug_feature, _feature), axis=0)
        aug_label = np.concatenate((aug_label, label), axis=0)
    return aug_feature, aug_label
def load_feature_label(path, aug_times=0):
    data = np.loadtxt(path, dtype=np.float, delimiter=',')
    # the first column is label, and the rest are features
    feature, label = data[:, 1:], data[:, 0]  
    if aug_times>0:
        feature, label = data_augmentation(feature, label, data.shape[1]-aug_times)
    return feature, label


数据变换


降采样


使用一组降采样因子 k1, k2, k3,每隔 ki-1 个数据取一个。

def down_sampling(data, rates):
    ds_seq_len = []
    ds_data = []
    # down sampling by rate k
    for k in rates:
        if k > data.shape[1] / 3:
            break
        _data = data[:, ::k]  # temp after down sampling
        ds_data.append(_data)
        ds_seq_len.append(_data.shape[1])  # remark the length info
    return ds_data, ds_seq_len


滑动平均


使用一组滑动窗口l1, l2, l3,每li个数据取平均。

def moving_average(data, moving_ws):
    num, seq_len = data.shape[0], data.shape[1]
    ma_data = []
    ma_seq_len = []
    for ws in moving_ws:
        if ws>data.shape[1]/3:
            break
        _data = np.zeros((num, seq_len-ws+1))
        for i in range(seq_len-ws+1):
            _data[:, i] = np.mean(data[:, i: i+ws], axis=1)
        ma_data.append(_data)
        ma_seq_len.append(_data.shape[1])
    return ma_data, ma_seq_len


获取MCNN输入


通过多组降频因子k,和滑动窗口l,对原序列进行处理,得到多个时间序列,并在不同时间序列上进行一维卷积操作,提取在不同时间规模下的抽象特征,是该论文的主要思想。

def get_mcnn_input(feature, label):
    origin = feature
    ms_branch, ms_lens = down_sampling(feature, rates=[2, 3, 4, 5])
    mf_branch, mf_lens = moving_average(feature, moving_ws=[5, 8, 11])
    label = np_utils.to_categorical(label)  # one hot
    features = [origin, *ms_branch, *mf_branch]
    features = [data.reshape(data.shape+(1,)) for data in features]
    data_lens = [origin.shape[1], *ms_lens, *mf_lens]
    return features, label


模型定义



mcnn 模型的输入是多个长度不唯一的时间序列,为了减少代码长度,使用列表推导式建立模型。

def MCNN_model(feature_lens, class_num):
    input_sigs = [Input(shape=(bra_len, 1)) for bra_len in feature_lens]
    # local convolution
    ms_sigs = []
    for i in range(len(input_sigs)):
        _ms = Conv1D(padding='same', kernel_size=conv_size, filters=256, activation='relu')(input_sigs[i])
        pooling_size = (_ms.shape[1].value - conv_size + 1) // pooling_factor
        _ms = MaxPooling1D(pool_size=pooling_size)(_ms)
        ms_sigs.append(_ms)
    merged = concatenate(ms_sigs, axis=1)
    # fully convolution
    conved = Conv1D(padding='valid', kernel_size=conv_size, filters=256, activation='relu')(merged)
    pooled = MaxPooling1D(pool_size=5)(conved)
    x = Flatten()(pooled)
    x = Dense(256, activation='relu')(x)
    x = Dense(256, activation='relu')(x)
    x = Dense(class_num, activation='softmax')(x)
    MCNN = Model(inputs=input_sigs, outputs=x)
#     MCNN.summary()
    MCNN.compile(loss='categorical_crossentropy', optimizer='Adam', metrics=['accuracy'])
    return MCNN


主函数


def on_single_dataset(data_path):
    data_name = data_path.split('/')[-2]
    # get the origin time series
    f_train, la_tr = load_feature_label(data_path+'TRAIN', aug_times=0)
    f_test, la_te = load_feature_label(data_path+'TEST', aug_times=0)
    f_train, f_test = normalization(f_train, f_test)
    # get the transform sequences
    f_trains, la_tr = get_mcnn_input(f_train, la_tr)
    f_tests, la_te = get_mcnn_input(f_test, la_te)
    feat_lens = [data.shape[1] for data in f_trains]  # get the length info of each transform sequence
    class_num = la_tr.shape[1]
    mcnn = MCNN_model(feat_lens, class_num)
    mcnn.fit(f_trains, la_tr, batch_size=128, epochs=64, verbose=0)
    te_loss, te_acc = mcnn.evaluate(f_tests, la_te, verbose=0)
    print("[%(data)s]: Test loss - %(loss).2f, Test accuracy - %(acc).2f%%" % {'data': data_name, 'loss': te_loss, 'acc': te_acc*100})
    la_pred = mcnn.predict(f_tests)
    for data in f_trains, f_tests, la_te, la_tr:
        del data
    gc.collect()
def main():
    dataPaths = get_datasets_path(base_path)
    for dp in dataPaths:
        on_single_dataset(dp)


https://www.jianshu.com/p/63c9ef510464

相关文章
|
8月前
|
算法 BI 计算机视觉
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
80 1
|
机器学习/深度学习 人工智能 自然语言处理
OneIE:A Joint Neural Model for Information Extraction with Global Features论文解读
大多数现有的用于信息抽取(IE)的联合神经网络模型使用局部任务特定的分类器来预测单个实例(例如,触发词,关系)的标签,而不管它们之间的交互。
207 0
|
数据可视化 数据挖掘
【论文解读】Dual Contrastive Learning:Text Classification via Label-Aware Data Augmentation
北航出了一篇比较有意思的文章,使用标签感知的数据增强方式,将对比学习放置在有监督的环境中 ,下游任务为多类文本分类,在低资源环境中进行实验取得了不错的效果
476 0
|
机器学习/深度学习 算法 数据挖掘
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
143 0
【多标签文本分类】Improved Neural Network-based Multi-label Classification with Better Initialization ……
|
机器学习/深度学习 算法 图形学
Deep learning based multi-scale channel compression feature surface defect detection system
简述:首先应用背景分割和模板匹配技术来定义覆盖目标工件的ROI区域。提取的感兴趣区域被均匀地裁剪成若干个图像块,每个块被送到基于CNN的模型,以分类杂乱背景中不同大小的表面缺陷。最后,对空间上相邻且具有相同类别标签的图像块进行合并,以生成各种表面缺陷的识别图。
156 0
|
数据挖掘
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
134 0
【多标签文本分类】Initializing neural networks for hierarchical multi-label text classification
【多标签文本分类】Ensemble Application of Convolutional and Recurrent Neural Networks for Multi-label Text
【多标签文本分类】Ensemble Application of Convolutional and Recurrent Neural Networks for Multi-label Text
110 0
【多标签文本分类】Ensemble Application of Convolutional and Recurrent Neural Networks for Multi-label Text
|
机器学习/深度学习 知识图谱
论文笔记:Multi-dimensional Graph Convolutional Networks
论文笔记:Multi-dimensional Graph Convolutional Networks
210 0
论文笔记:Multi-dimensional Graph Convolutional Networks
|
机器学习/深度学习 编解码 文字识别
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images(一)
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images
159 0
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images(一)
|
机器学习/深度学习 编解码 文字识别
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images(二)
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images
214 0
Hybrid Multiple Attention Network for Semantic Segmentation in Aerial Images(二)

热门文章

最新文章

下一篇
开通oss服务