JavaScript 数据结构与算法之美 - 十大经典排序算法汇总(上)

简介: JavaScript 数据结构与算法之美 - 十大经典排序算法汇总(上)

1. 前言


算法为王。

想学好前端,先练好内功,内功不行,就算招式练的再花哨,终究成不了高手;只有内功深厚者,前端之路才会走得更远。


笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习。


文中包含了 十大经典排序算法 的思想、代码实现、一些例子、复杂度分析、动画、还有算法可视化工具。


这应该是目前较为简单的 JavaScript 十大经典排序算法 的文章讲解了吧。


2. 如何分析一个排序算法


复杂度分析是整个算法学习的精髓。


  • 时间复杂度: 一个算法执行所耗费的时间。
  • 空间复杂度: 运行完一个程序所需内存的大小。


时间和空间复杂度的详解,请看 JavaScript 数据结构与算法之美 - 时间和空间复杂度

学习排序算法,我们除了学习它的算法原理、代码实现之外,更重要的是要学会如何评价、分析一个排序算法。


分析一个排序算法,要从 执行效率内存消耗稳定性 三方面入手。


2.1 执行效率


1. 最好情况、最坏情况、平均情况时间复杂度


我们在分析排序算法的时间复杂度时,要分别给出最好情况、最坏情况、平均情况下的时间复杂度。

除此之外,你还要说出最好、最坏时间复杂度对应的要排序的原始数据是什么样的。


2. 时间复杂度的系数、常数 、低阶


我们知道,时间复杂度反应的是数据规模 n 很大的时候的一个增长趋势,所以它表示的时候会忽略系数、常数、低阶。

但是实际的软件开发中,我们排序的可能是 10 个、100 个、1000 个这样规模很小的数据,所以,在对同一阶时间复杂度的排序算法性能对比的时候,我们就要把系数、常数、低阶也考虑进来。


3. 比较次数和交换(或移动)次数


这一节和下一节讲的都是基于比较的排序算法。基于比较的排序算法的执行过程,会涉及两种操作,一种是元素比较大小,另一种是元素交换或移动。

所以,如果我们在分析排序算法的执行效率的时候,应该把比较次数和交换(或移动)次数也考虑进去。


2.2 内存消耗


也就是看空间复杂度。


还需要知道如下术语:


  • 内排序:所有排序操作都在内存中完成;
  • 外排序:由于数据太大,因此把数据放在磁盘中,而排序通过磁盘和内存的数据传输才能进行;
  • 原地排序:原地排序算法,就是特指空间复杂度是 O(1) 的排序算法。


2.3 稳定性


  • 稳定:如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序不变

比如: a 原本在 b 前面,而 a = b,排序之后,a 仍然在 b 的前面;

  • 不稳定:如果待排序的序列中存在值相等的元素,经过排序之后,相等元素之间原有的先后顺序改变

比如:a 原本在 b 的前面,而 a = b,排序之后, a 在 b 的后面;


3. 十大经典排序算法


3.1 冒泡排序(Bubble Sort)


微信图片_20220513215533.gif


思想


  • 冒泡排序只会操作相邻的两个数据。
  • 每次冒泡操作都会对相邻的两个元素进行比较,看是否满足大小关系要求。如果不满足就让它俩互换。
  • 一次冒泡会让至少一个元素移动到它应该在的位置,重复 n 次,就完成了 n 个数据的排序工作。

特点


  • 优点:排序算法的基础,简单实用易于理解。
  • 缺点:比较次数多,效率较低。


实现


// 冒泡排序(未优化)
const bubbleSort = arr => {
    console.time('改进前冒泡排序耗时');
    const length = arr.length;
    if (length <= 1) return;
    // i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。
    for (let i = 0; i < length - 1; i++) {
        // j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。
        for (let j = 0; j < length - i - 1; j++) {
            if (arr[j] > arr[j + 1]) {
                const temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
            }
        }
    }
    console.log('改进前 arr :', arr);
    console.timeEnd('改进前冒泡排序耗时');
};


优化:当某次冒泡操作已经没有数据交换时,说明已经达到完全有序,不用再继续执行后续的冒泡操作。


// 冒泡排序(已优化)
const bubbleSort2 = arr => {
    console.time('改进后冒泡排序耗时');
    const length = arr.length;
    if (length <= 1) return;
    // i < length - 1 是因为外层只需要 length-1 次就排好了,第 length 次比较是多余的。
    for (let i = 0; i < length - 1; i++) {
        let hasChange = false; // 提前退出冒泡循环的标志位
        // j < length - i - 1 是因为内层的 length-i-1 到 length-1 的位置已经排好了,不需要再比较一次。
        for (let j = 0; j < length - i - 1; j++) {
            if (arr[j] > arr[j + 1]) {
                const temp = arr[j];
                arr[j] = arr[j + 1];
                arr[j + 1] = temp;
                hasChange = true; // 表示有数据交换
            }
        }
        if (!hasChange) break; // 如果 false 说明所有元素已经到位,没有数据交换,提前退出
    }
    console.log('改进后 arr :', arr);
    console.timeEnd('改进后冒泡排序耗时');
};


测试


// 测试
const arr = [7, 8, 4, 5, 6, 3, 2, 1];
bubbleSort(arr);
// 改进前 arr : [1, 2, 3, 4, 5, 6, 7, 8]
// 改进前冒泡排序耗时: 0.43798828125ms
const arr2 = [7, 8, 4, 5, 6, 3, 2, 1];
bubbleSort2(arr2);
// 改进后 arr : [1, 2, 3, 4, 5, 6, 7, 8]
// 改进后冒泡排序耗时: 0.318115234375ms


分析


  • 第一,冒泡排序是原地排序算法吗 ?


冒泡的过程只涉及相邻数据的交换操作,只需要常量级的临时空间,所以它的空间复杂度为 O(1),是一个原地排序算法。


  • 第二,冒泡排序是稳定的排序算法吗 ?


在冒泡排序中,只有交换才可以改变两个元素的前后顺序。

为了保证冒泡排序算法的稳定性,当有相邻的两个元素大小相等的时候,我们不做交换,相同大小的数据在排序前后不会改变顺序。

所以冒泡排序是稳定的排序算法。


  • 第三,冒泡排序的时间复杂度是多少 ?


最佳情况:T(n) = O(n),当数据已经是正序时。

最差情况:T(n) = O(n2),当数据是反序时。

平均情况:T(n) = O(n2)。


动画


微信图片_20220513215651.gif


微信图片_20220513215702.gif


3.2 插入排序(Insertion Sort)


插入排序又为分为 直接插入排序 和优化后的 拆半插入排序希尔排序,我们通常说的插入排序是指直接插入排序。


一、直接插入


思想


一般人打扑克牌,整理牌的时候,都是按牌的大小(从小到大或者从大到小)整理牌的,那每摸一张新牌,就扫描自己的牌,把新牌插入到相应的位置。

插入排序的工作原理:通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。


步骤


  • 从第一个元素开始,该元素可以认为已经被排序;
  • 取出下一个元素,在已经排序的元素序列中从后向前扫描;
  • 如果该元素(已排序)大于新元素,将该元素移到下一位置;
  • 重复步骤 3,直到找到已排序的元素小于或者等于新元素的位置;
  • 将新元素插入到该位置后;
  • 重复步骤 2 ~ 5。


实现


// 插入排序
const insertionSort = array => {
    const len = array.length;
    if (len <= 1) return
    let preIndex, current;
    for (let i = 1; i < len; i++) {
        preIndex = i - 1; //待比较元素的下标
        current = array[i]; //当前元素
        while (preIndex >= 0 && array[preIndex] > current) {
            //前置条件之一: 待比较元素比当前元素大
            array[preIndex + 1] = array[preIndex]; //将待比较元素后移一位
            preIndex--; //游标前移一位
        }
        if (preIndex + 1 != i) {
            //避免同一个元素赋值给自身
            array[preIndex + 1] = current; //将当前元素插入预留空位
            console.log('array :', array);
        }
    }
    return array;
};


测试


// 测试
const array = [5, 4, 3, 2, 1];
console.log("原始 array :", array);
insertionSort(array);
// 原始 array:    [5, 4, 3, 2, 1]
// array:           [4, 5, 3, 2, 1]
// array:           [3, 4, 5, 2, 1]
// array:          [2, 3, 4, 5, 1]
// array:           [1, 2, 3, 4, 5]


分析


  • 第一,插入排序是原地排序算法吗 ?


插入排序算法的运行并不需要额外的存储空间,所以空间复杂度是 O(1),所以,这是一个原地排序算法。


  • 第二,插入排序是稳定的排序算法吗 ?


在插入排序中,对于值相同的元素,我们可以选择将后面出现的元素,插入到前面出现元素的后面,这样就可以保持原有的前后顺序不变,所以插入排序是稳定的排序算法。


  • 第三,插入排序的时间复杂度是多少 ?


最佳情况:T(n) = O(n),当数据已经是正序时。

最差情况:T(n) = O(n2),当数据是反序时。

平均情况:T(n) = O(n2)。


动画


微信图片_20220513215816.gif


二、拆半插入


插入排序也有一种优化算法,叫做拆半插入


思想


折半插入排序是直接插入排序的升级版,鉴于插入排序第一部分为已排好序的数组,我们不必按顺序依次寻找插入点,只需比较它们的中间值与待插入元素的大小即可。


步骤


  • 取 0 ~ i-1 的中间点 ( m = (i-1) >> 1 ),array[i] 与 array[m] 进行比较,若 array[i] < array[m],则说明待插入的元素 array[i] 应该处于数组的 0 ~ m 索引之间;反之,则说明它应该处于数组的 m ~ i-1 索引之间。
  • 重复步骤 1,每次缩小一半的查找范围,直至找到插入的位置。
  • 将数组中插入位置之后的元素全部后移一位。
  • 在指定位置插入第 i 个元素


注:x >> 1 是位运算中的右移运算,表示右移一位,等同于 x 除以 2 再取整,即 x >> 1 == Math.floor(x/2) 。

// 折半插入排序
const binaryInsertionSort = array => {
    const len = array.length;
    if (len <= 1) return;
    let current, i, j, low, high, m;
    for (i = 1; i < len; i++) {
        low = 0;
        high = i - 1;
        current = array[i];
        while (low <= high) {
            //步骤 1 & 2 : 折半查找
            m = (low + high) >> 1; // 注: x>>1 是位运算中的右移运算, 表示右移一位, 等同于 x 除以 2 再取整, 即 x>>1 == Math.floor(x/2) .
            if (array[i] >= array[m]) {
                //值相同时, 切换到高半区,保证稳定性
                low = m + 1; //插入点在高半区
            } else {
                high = m - 1; //插入点在低半区
            }
        }
        for (j = i; j > low; j--) {
            //步骤 3: 插入位置之后的元素全部后移一位
            array[j] = array[j - 1];
            console.log('array2 :', JSON.parse(JSON.stringify(array)));
        }
        array[low] = current; //步骤 4: 插入该元素
    }
    console.log('array2 :', JSON.parse(JSON.stringify(array)));
    return array;
};


测试


const array2 = [5, 4, 3, 2, 1];
console.log('原始 array2:', array2);
binaryInsertionSort(array2);
// 原始 array2:  [5, 4, 3, 2, 1]
// array2 :     [5, 5, 3, 2, 1]
// array2 :     [4, 5, 5, 2, 1]
// array2 :     [4, 4, 5, 2, 1]
// array2 :     [3, 4, 5, 5, 1]
// array2 :     [3, 4, 4, 5, 1]
// array2 :     [3, 3, 4, 5, 1]
// array2 :     [2, 3, 4, 5, 5]
// array2 :     [2, 3, 4, 4, 5]
// array2 :     [2, 3, 3, 4, 5]
// array2 :     [2, 2, 3, 4, 5]
// array2 :     [1, 2, 3, 4, 5]


注意:和直接插入排序类似,折半插入排序每次交换的是相邻的且值为不同的元素,它并不会改变值相同的元素之间的顺序,因此它是稳定的。


三、希尔排序


希尔排序是一个平均时间复杂度为 O(n log n) 的算法,会在下一个章节和 归并排序、快速排序、堆排序 一起讲,本文就不展开了。


3.3 选择排序(Selection Sort)


思路


选择排序算法的实现思路有点类似插入排序,也分已排序区间和未排序区间。但是选择排序每次会从未排序区间中找到最小的元素,将其放到已排序区间的末尾。


步骤


  1. 首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置。
  2. 再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
  3. 重复第二步,直到所有元素均排序完毕。


实现


const selectionSort = array => {
    const len = array.length;
    let minIndex, temp;
    for (let i = 0; i < len - 1; i++) {
        minIndex = i;
        for (let j = i + 1; j < len; j++) {
            if (array[j] < array[minIndex]) {
                // 寻找最小的数
                minIndex = j; // 将最小数的索引保存
            }
        }
        temp = array[i];
        array[i] = array[minIndex];
        array[minIndex] = temp;
        console.log('array: ', array);
    }
    return array;
};


测试


// 测试
const array = [5, 4, 3, 2, 1];
console.log('原始array:', array);
selectionSort(array);
// 原始 array:  [5, 4, 3, 2, 1]
// array:           [1, 4, 3, 2, 5]
// array:           [1, 2, 3, 4, 5]
// array:          [1, 2, 3, 4, 5]
// array:           [1, 2, 3, 4, 5]


分析


  • 第一,选择排序是原地排序算法吗 ?


选择排序空间复杂度为 O(1),是一种原地排序算法。


  • 第二,选择排序是稳定的排序算法吗 ?


选择排序每次都要找剩余未排序元素中的最小值,并和前面的元素交换位置,这样破坏了稳定性。所以,选择排序是一种不稳定的排序算法。


  • 第三,选择排序的时间复杂度是多少 ?


无论是正序还是逆序,选择排序都会遍历 n2 / 2 次来排序,所以,最佳、最差和平均的复杂度是一样的。


最佳情况:T(n) = O(n2)。

最差情况:T(n) = O(n2)。

平均情况:T(n) = O(n2)。

动画


微信图片_20220513220000.gif


3.4 归并排序(Merge Sort)


思想


排序一个数组,我们先把数组从中间分成前后两部分,然后对前后两部分分别排序,再将排好序的两部分合并在一起,这样整个数组就都有序了。


归并排序采用的是分治思想


分治,顾名思义,就是分而治之,将一个大问题分解成小的子问题来解决。小的子问题解决了,大问题也就解决了。


微信图片_20220513220015.png


注:x >> 1 是位运算中的右移运算,表示右移一位,等同于 x 除以 2 再取整,即 x >> 1 === Math.floor(x / 2) 。

实现


const mergeSort = arr => {
    //采用自上而下的递归方法
    const len = arr.length;
    if (len < 2) {
        return arr;
    }
    // length >> 1 和 Math.floor(len / 2) 等价
    let middle = Math.floor(len / 2),
        left = arr.slice(0, middle),
        right = arr.slice(middle); // 拆分为两个子数组
    return merge(mergeSort(left), mergeSort(right));
};
const merge = (left, right) => {
    const result = [];
    while (left.length && right.length) {
        // 注意: 判断的条件是小于或等于,如果只是小于,那么排序将不稳定.
        if (left[0] <= right[0]) {
            result.push(left.shift());
        } else {
            result.push(right.shift());
        }
    }
    while (left.length) result.push(left.shift());
    while (right.length) result.push(right.shift());
    return result;
};


测试


// 测试
const arr = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];
console.time('归并排序耗时');
console.log('arr :', mergeSort(arr));
console.timeEnd('归并排序耗时');
// arr : [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]
// 归并排序耗时: 0.739990234375ms


分析


  • 第一,归并排序是原地排序算法吗 ?


这是因为归并排序的合并函数,在合并两个有序数组为一个有序数组时,需要借助额外的存储空间。


实际上,尽管每次合并操作都需要申请额外的内存空间,但在合并完成之后,临时开辟的内存空间就被释放掉了。在任意时刻,CPU 只会有一个函数在执行,也就只会有一个临时的内存空间在使用。临时内存空间最大也不会超过 n 个数据的大小,所以空间复杂度是 O(n)。


所以,归并排序不是原地排序算法。


  • 第二,归并排序是稳定的排序算法吗 ?


merge 方法里面的 left[0] <= right[0] ,保证了值相同的元素,在合并前后的先后顺序不变。归并排序是稳定的排序方法。


  • 第三,归并排序的时间复杂度是多少 ?


从效率上看,归并排序可算是排序算法中的佼佼者。假设数组长度为 n,那么拆分数组共需 logn 步,又每步都是一个普通的合并子数组的过程,时间复杂度为 O(n),故其综合时间复杂度为 O(n log n)。

最佳情况:T(n) = O(n log n)。

最差情况:T(n) = O(n log n)。

平均情况:T(n) = O(n log n)。


动画


微信图片_20220513220101.gif


3.5 快速排序 (Quick Sort)


快速排序的特点就是快,而且效率高!它是处理大数据最快的排序算法之一。


思想


  • 先找到一个基准点(一般指数组的中部),然后数组被该基准点分为两部分,依次与该基准点数据比较,如果比它小,放左边;反之,放右边。
  • 左右分别用一个空数组去存储比较后的数据。
  • 最后递归执行上述操作,直到数组长度 <= 1;


特点:快速,常用。


缺点:需要另外声明两个数组,浪费了内存空间资源。


实现


方法一:


const quickSort1 = arr => {
    if (arr.length <= 1) {
        return arr;
    }
    //取基准点
    const midIndex = Math.floor(arr.length / 2);
    //取基准点的值,splice(index,1) 则返回的是含有被删除的元素的数组。
    const valArr = arr.splice(midIndex, 1);
    const midIndexVal = valArr[0];
    const left = []; //存放比基准点小的数组
    const right = []; //存放比基准点大的数组
    //遍历数组,进行判断分配
    for (let i = 0; i < arr.length; i++) {
        if (arr[i] < midIndexVal) {
            left.push(arr[i]); //比基准点小的放在左边数组
        } else {
            right.push(arr[i]); //比基准点大的放在右边数组
        }
    }
    //递归执行以上操作,对左右两个数组进行操作,直到数组长度为 <= 1
    return quickSort1(left).concat(midIndexVal, quickSort1(right));
};
const array2 = [5, 4, 3, 2, 1];
console.log('quickSort1 ', quickSort1(array2));
// quickSort1: [1, 2, 3, 4, 5]


方法二:


// 快速排序
const quickSort = (arr, left, right) => {
    let len = arr.length,
        partitionIndex;
    left = typeof left != 'number' ? 0 : left;
    right = typeof right != 'number' ? len - 1 : right;
    if (left < right) {
        partitionIndex = partition(arr, left, right);
        quickSort(arr, left, partitionIndex - 1);
        quickSort(arr, partitionIndex + 1, right);
    }
    return arr;
};
const partition = (arr, left, right) => {
    //分区操作
    let pivot = left, //设定基准值(pivot)
        index = pivot + 1;
    for (let i = index; i <= right; i++) {
        if (arr[i] < arr[pivot]) {
            swap(arr, i, index);
            index++;
        }
    }
    swap(arr, pivot, index - 1);
    return index - 1;
};
const swap = (arr, i, j) => {
    let temp = arr[i];
    arr[i] = arr[j];
    arr[j] = temp;
};


测试


// 测试
const array = [5, 4, 3, 2, 1];
console.log('原始array:', array);
const newArr = quickSort(array);
console.log('newArr:', newArr);
// 原始 array:  [5, 4, 3, 2, 1]
// newArr:     [1, 4, 3, 2, 5]


分析


  • 第一,快速排序是原地排序算法吗 ?


因为 partition() 函数进行分区时,不需要很多额外的内存空间,所以快排是原地排序算法。


  • 第二,快速排序是稳定的排序算法吗 ?


和选择排序相似,快速排序每次交换的元素都有可能不是相邻的,因此它有可能打破原来值为相同的元素之间的顺序。因此,快速排序并不稳定


  • 第三,快速排序的时间复杂度是多少 ?


极端的例子:如果数组中的数据原来已经是有序的了,比如 1,3,5,6,8。如果我们每次选择最后一个元素作为 pivot,那每次分区得到的两个区间都是不均等的。我们需要进行大约 n 次分区操作,才能完成快排的整个过程。每次分区我们平均要扫描大约 n / 2 个元素,这种情况下,快排的时间复杂度就从 O(nlogn) 退化成了 O(n2)。


最佳情况:T(n) = O(n log n)。

最差情况:T(n) = O(n2)。

平均情况:T(n) = O(n log n)。


动画


微信图片_20220513220210.gif


解答开篇问题


快排和归并用的都是分治思想,递推公式和递归代码也非常相似,那它们的区别在哪里呢 ?


微信图片_20220513220213.png


可以发现:


  • 归并排序的处理过程是由下而上的,先处理子问题,然后再合并。
  • 而快排正好相反,它的处理过程是由上而下的,先分区,然后再处理子问题。
  • 归并排序虽然是稳定的、时间复杂度为 O(nlogn) 的排序算法,但是它是非原地排序算法。
  • 归并之所以是非原地排序算法,主要原因是合并函数无法在原地执行。
  • 快速排序通过设计巧妙的原地分区函数,可以实现原地排序,解决了归并排序占用太多内存的问题。
相关文章
|
5天前
|
JavaScript 前端开发
js实现数据的双向绑定
js实现数据的双向绑定
15 2
|
15天前
|
数据采集 存储 JavaScript
基于Python 爬书旗网小说数据并可视化,通过js逆向对抗网站反爬,想爬啥就爬啥
本文介绍了如何使用Python编写网络爬虫程序爬取书旗网上的小说数据,并通过逆向工程对抗网站的反爬机制,最后对采集的数据进行可视化分析。
基于Python 爬书旗网小说数据并可视化,通过js逆向对抗网站反爬,想爬啥就爬啥
|
1天前
|
JavaScript 算法 前端开发
"揭秘Vue.js的高效渲染秘诀:深度解析Diff算法如何让前端开发快人一步"
【8月更文挑战第20天】Vue.js是一款备受欢迎的前端框架,以其声明式的响应式数据绑定和组件化开发著称。在Vue中,Diff算法是核心之一,它高效计算虚拟DOM更新时所需的最小实际DOM变更,确保界面快速准确更新。算法通过比较新旧虚拟DOM树的同层级节点,递归检查子节点,并利用`key`属性优化列表更新。虽然存在局限性,如难以处理跨层级节点移动,但Diff算法仍是Vue高效更新机制的关键,帮助开发者构建高性能Web应用。
12 1
|
2天前
|
算法
【初阶数据结构】复杂度算法题篇
该方法基于如下的事实:当我们将数组的元素向右移动 k 次后,尾部 kmodn 个元素会移动至数组头部,其余元素向后移动 kmodn 个位置。
|
4天前
|
机器学习/深度学习 人工智能 算法
【人工智能】线性回归模型:数据结构、算法详解与人工智能应用,附代码实现
线性回归是一种预测性建模技术,它研究的是因变量(目标)和自变量(特征)之间的关系。这种关系可以表示为一个线性方程,其中因变量是自变量的线性组合。
15 2
|
7天前
|
前端开发 JavaScript 安全
JavaScript——数字超过精度导致数据有误
JavaScript——数字超过精度导致数据有误
18 2
|
6天前
|
JavaScript 前端开发
JavaScript中通过按回车键进行数据的录入
这篇文章提供了一个JavaScript示例代码,演示了如何通过监听回车键(keyCode为13)在网页上实现数据的录入和触发一个警告框提示"正在登录验证......"。
JavaScript中通过按回车键进行数据的录入
|
13天前
|
JavaScript 数据处理
如何使用 Vue.js 将数据对象的值放入另一个数据对象中?
如何使用 Vue.js 将数据对象的值放入另一个数据对象中?
|
9天前
|
JavaScript 算法 数据安全/隐私保护
烯牛数据JS逆向:MD5数据加密?不存在的!
烯牛数据JS逆向:MD5数据加密?不存在的!
25 1
|
9天前
|
JavaScript 前端开发 网络协议
抖音直播弹幕数据逆向:websocket和JS注入
抖音直播弹幕数据逆向:websocket和JS注入
37 1