玩转Spring Cache --- 整合进程缓存之王Caffeine Cache和Ehcache3.x【享学Spring】(上)

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: 玩转Spring Cache --- 整合进程缓存之王Caffeine Cache和Ehcache3.x【享学Spring】(上)

前言


前面文章大篇幅详细讲解了Spring Cache缓存抽象、三大缓存注解的工作原理等等。若是细心的小伙伴会发现:讲解时的Demo我使用的缓存实现方案均是Spring默认提供的:ConcurrentMapCache。使用它的原因是它是spring-context内置的,无需额外导包就能使用,非常的方便~


但在实际开发过程中,Spring内建提供的实现显然是满足不了日益复杂的需求的,现实情况是很小有可能直接使用ConcurrentMapCacheManager和ConcurrentMapCache去作为存储方案,毕竟它提供的能力非常有限,有如下两个致命的不足:


  1. 基于本地内存的缓存,且它无法用于分布式环境
  2. 没有缓存过期时间Expire


就光这两点没有得到满足,在实际开发中就足以有理由抛弃内置实现,而需要引入第三方更为强大的缓存实现方案。


Spring Cache缓存抽象的实现产品


缓存标准方面:一个是JSR107,一个是Spring Cache,前面也说了Spring Cache已经成为了现实中的标准,所以市面上它的实现产品非常丰富,因此本文主要看看基于Spring Cache的实现产品的集成方案。


Spring Cache它也是支持JSR107规范的,可谓非常的友好。(请导入spring-contextr-support包)


要想了解常用的、流行的Spring Cache的实现方案有哪些,我推荐一个由SpringBoot提枚举类CacheType,它里面收纳得还是比较全面的:


此枚举是SpringBoot提供的供以参考,但本文内容和SpringBoot没有半毛钱关系

public enum CacheType {
  GENERIC, // 使用的SimpleCacheManager(自己手动指定Cache,可任意类型Cache实现哦)
  JCACHE, // 使用org.springframework.cache.jcache.JCacheCacheManager
  EHCACHE, // 使用org.springframework.cache.ehcache.EhCacheCacheManager
  HAZELCAST, // 使用com.hazelcast.spring.cache.HazelcastCacheManager
  INFINISPAN, // 使用org.infinispan.spring.provider.SpringEmbeddedCacheManager
  COUCHBASE, // 使用com.couchbase.client.spring.cache.CouchbaseCacheManager
  REDIS, // 使用org.springframework.data.redis.cache.RedisCacheManager,依赖于RedisTemplate进行操作
  CAFFEINE, // 使用org.springframework.cache.caffeine.CaffeineCacheManager
  @Deprecated
  GUAVA, // 使用org.springframework.cache.guava.GuavaCacheManager,已经过期不推荐使用了
  SIMPLE, // 使用ConcurrentMapCacheManager
  NONE; // 使用NoOpCacheManager,表示禁用缓存
}


这些就是业内最为流行的那些缓存实现,下面做简单的介绍作为参考:


  1. EhCache:一个纯Java的进程内缓存框架,具有快速、精干等特点。因为它是纯Java进程的,所以也是基于本地缓存的。(注意:EhCache2.x和EhCache3.x差异巨大且不兼容)
  2. Hazelcast:基于内存的数据网格。虽然它基于内存,但是分布式应用程序可以使用Hazelcast进行分布式缓存、同步、集群、处理、发布/订阅消息等。(如果你正在寻找基于内存的、高速的、可弹性扩展的、支持分布式的、对开发者友好的NoSQL,Hazelcast是一个很棒的选择,它的理念是用应用服务的内存换取效率,成本较高)1. 从com.hazelcast.spring.cache.HazelcastCacheManager这个包名中也能看出,是它自己实现的Spring Cache标准,而不是spring-data帮它实现的(类似MyBatis集成Spring),但它凭借自己的足够优秀,让Spring接受了它
  3. Infinispan:基于Apache 2.0协议的分布式键值存储系统,可以以普通java lib或者独立服务的方式提供服务,支持各种协议(Hot Rod, REST, WebSockets)。支持的高级特性包括:事务、事件通知、高级查询、分布式处理、off-heap及故障迁移。 它按照署模式分为嵌入式(Embedded)模式(基于本地内存)、Client-Server(C\S)模式。
  4. Couchbase:是一个非关系型数据库,它实际上是由couchdb+membase组成,所以它既能像couchdb那样存储json文档(类似MongoDB),也能像membase那样高速存储键值对。(新一代的NoSql数据库,国外挺火的)
  5. Redis:熟悉得不能再熟悉的分布式缓存,只有Client-Server(C\S)模式,单线程让它天生具有线程安全的特性。Java一般使用Jedis/Luttuce来操纵~
  6. Caffeine(咖啡因):Caffeine是使用Java8对Guava缓存的重写版本,一个接近最佳的的缓存库(号称性能最好)。Spring5已经放弃guava,拥抱caffeine,它的API保持了近乎和guava一致,但是性能上碾压它。1. guava是谷歌Google Guava工具包的,使用非常广泛。Caffeine长江后浪推前浪,性能上碾压了Guava,是它的替代品。
  7. SIMPLE:略


进程缓存:Ehcache、Guava、Caffeine对比


首先它哥三都作为进程缓存(本地缓存)的优秀开源产品,那么若我们要使用本地缓存来加速访问,选择哪种呢?下文做一个简单的对比:


  1. EhCache:是一个纯Java的进程内缓存框架,具有快速、精干等特点,是Hibernate、MyBatis默认的缓存提供。(备注:虽然EhCache3支持到了分布式,但它还是基于Java进程的缓存)
  2. Guava:它是Google Guava工具包中的一个非常方便易用的本地化缓存实现,基于LRU算法实现,支持多种缓存过期策略。它出现得非常早,有点廉颇老矣之感~
  3. Caffeine:是使用Java8对Guava缓存的重写版本,在Spring5中将取代了Guava,支持多种缓存过期策略。

说明:Caffeine它在性能上碾压其余两者,它可以完全的替代Guava,因为API上都差不多一致,并且它还提供了Adapter让Guava过度到Caffeine上来。

Caffeine被称为进程缓存之王


为何Guava被放弃了,但EhCache依旧坚挺?我觉得主要是它有如下特点:


  1. 稳定,健壮
  2. 被认可:apache 2.0 license
  3. 读、写速度还是不错的
  4. 够简单
  5. 够秀珍(jar包很小)
  6. 够轻量(仅仅依赖slf4j这一个包)
  7. 好扩展(可自定义淘汰算法)
  8. 监听器
  9. Ehcache支持缓存数据到硬盘(它也支持内存级别的缓存,Ehcache3还支持了分布式的缓存)
  10. 成熟(MyBatis、Hibernate等知名产品都用它作为默认缓存方案)


本文讲解的是Spring Cache和`进程缓存Caffeine和EhCache的整合。


Caffeine和Spring Cache整合


关于Caffeine的强悍之处,此处就不费笔墨了,总之两个字:优秀。若我们在Spring应用中需要使用Caffeine怎么办呢?当然最直接的使用方式是导入Jar包后,直接使用它的API:CacheManager和Cache等等。

当然,这不是本文要讲述的,本文主要是要让它和Spring集成,从而可以使用Spring Cache注解来直接操作缓存~


整合Caffeine,其实Spring已经有个模块对它提供了支持:spring-context-support


<dependency>
    <groupId>org.springframework</groupId>
    <artifactId>spring-context-support</artifactId>
    <version>5.1.6.RELEASE</version>
</dependency>


此包属于spring-context的支持包,一般建议导入。它的内容如下:


image.png

需要注意的是,在Spring5之前,此包还默认提供了对Guava的支持,但在Spring5后彻底移除了,这也侧面证明Guava确实该退休了~


集成第一步:除了导入support包,当然还得导入咖啡因的包:

<dependency>
    <groupId>com.github.ben-manes.caffeine</groupId>
    <artifactId>caffeine</artifactId>
    <!-- 2019.2最新版本 caffeine是2015年才面市的,发展还是很迅速的-->
    <version>2.7.0</version>
</dependency>


实施之前,先简单看看spring-context-support提供的CaffeineCacheManager实现:


// @since 4.3   Requires Caffeine 2.1 or higher.显然我们都2.7版本 肯定满足呀
public class CaffeineCacheManager implements CacheManager {
  private final ConcurrentMap<String, Cache> cacheMap = new ConcurrentHashMap<>(16);
  // 默认能动态生成Cache,对使用者友好
  private boolean dynamic = true;
  // 默认使用的builder  可通过setCaffeine来自定这个cacheBuilder 
  // cacheBuilder.build()得到一个com.github.benmanes.caffeine.cache.Cache  让可以自定义N个参数
  private Caffeine<Object, Object> cacheBuilder = Caffeine.newBuilder();
  @Nullable
  private CacheLoader<Object, Object> cacheLoader;
  private boolean allowNullValues = true; // 是否允许null值
  // 一样的,两个构造函数。你可以指定,也可以让动态生成
  public CaffeineCacheManager() {
  }
  public CaffeineCacheManager(String... cacheNames) {
    setCacheNames(Arrays.asList(cacheNames));
  }
  ...
  @Override
  @Nullable
  public Cache getCache(String name) {
    Cache cache = this.cacheMap.get(name);
    if (cache == null && this.dynamic) {
      synchronized (this.cacheMap) {
        cache = this.cacheMap.get(name);
        if (cache == null) {
          cache = createCaffeineCache(name);
          this.cacheMap.put(name, cache);
        }
      }
    }
    return cache;
  }
  // CaffeineCache实现了org.springframework.cache.Cache接口
  // 内部实现都是委托给com.github.benmanes.caffeine.cache.Cache<Object, Object>来做的
  protected Cache createCaffeineCache(String name) {
    return new CaffeineCache(name, createNativeCaffeineCache(name), isAllowNullValues());
  }
  ...
}


它提供的Cache实现:CaffeineCache。非常简单,所有工作都委托给com.github.benmanes.caffeine.cache.Cache了,因此省略。


第二步:准备CacheConfig 配置文件


@EnableCaching
@Configuration
public class CacheConfig extends CachingConfigurerSupport {
    @Bean
    public CacheManager cacheManager() {
        CaffeineCacheManager cacheManager = new CaffeineCacheManager();
        // 方案一(常用):定制化缓存Cache
        cacheManager.setCaffeine(Caffeine.newBuilder()
                .expireAfterWrite(10, TimeUnit.MINUTES)
                .initialCapacity(100)
                .maximumSize(10_000))
        // 如果缓存种没有对应的value,通过createExpensiveGraph方法同步加载  buildAsync是异步加载
        //.build(key -> createExpensiveGraph(key))
        ;
        // 方案二:传入一个CaffeineSpec定制缓存,它的好处是可以把配置方便写在配置文件里
        //cacheManager.setCaffeineSpec(CaffeineSpec.parse("initialCapacity=50,maximumSize=500,expireAfterWrite=5s"));
        return cacheManager;
    }
}
@Service
public class CacheDemoServiceImpl implements CacheDemoService {
    @Cacheable(cacheNames = "demoCache", key = "#id")
    @Override
    public Object getFromDB(Integer id) {
        System.out.println("模拟去db查询~~~" + id);
        return "hello cache...";
    }
}


运行单测:

@RunWith(SpringJUnit4ClassRunner.class)
@ContextConfiguration(classes = {RootConfig.class, CacheConfig.class})
public class TestSpringBean {
    @Autowired
    private CacheDemoService cacheDemoService;
    @Autowired
    private CacheManager cacheManager;
    @Test
    public void test1() {
        cacheDemoService.getFromDB(1);
        cacheDemoService.getFromDB(1);
        System.out.println("----------验证缓存是否生效----------");
        Cache cache = cacheManager.getCache("demoCache");
        System.out.println(cache);
        System.out.println(cache.get(1, String.class));
    }
}


打印结果:

模拟去db查询~~~1
----------验证缓存是否生效----------
org.springframework.cache.caffeine.CaffeineCache@4f74980d
hello cache...


从结果中可以得出结论:缓存生效。

关于Caffeine的更多API以及它的高级使用,不是本文讨论的内容,有兴趣的小伙伴可以自行学习和研究~



相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
1月前
|
缓存 NoSQL Java
Spring Boot中的分布式缓存方案
Spring Boot提供了简便的方式来集成和使用分布式缓存。通过Redis和Memcached等缓存方案,可以显著提升应用的性能和扩展性。合理配置和优化缓存策略,可以有效避免常见的缓存问题,保证系统的稳定性和高效运行。
50 3
|
1月前
|
缓存 Java 数据库连接
深入探讨:Spring与MyBatis中的连接池与缓存机制
Spring 与 MyBatis 提供了强大的连接池和缓存机制,通过合理配置和使用这些机制,可以显著提升应用的性能和可扩展性。连接池通过复用数据库连接减少了连接创建和销毁的开销,而 MyBatis 的一级缓存和二级缓存则通过缓存查询结果减少了数据库访问次数。在实际应用中,结合具体的业务需求和系统架构,优化连接池和缓存的配置,是提升系统性能的重要手段。
66 4
|
2月前
|
存储 缓存 Java
Spring缓存注解【@Cacheable、@CachePut、@CacheEvict、@Caching、@CacheConfig】使用及注意事项
Spring缓存注解【@Cacheable、@CachePut、@CacheEvict、@Caching、@CacheConfig】使用及注意事项
368 2
|
4月前
|
缓存 Java 开发工具
Spring是如何解决循环依赖的?从底层源码入手,详细解读Spring框架的三级缓存
三级缓存是Spring框架里,一个经典的技术点,它很好地解决了循环依赖的问题,也是很多面试中会被问到的问题,本文从源码入手,详细剖析Spring三级缓存的来龙去脉。
236 24
|
4月前
|
存储 缓存 Java
在Spring Boot中使用缓存的技术解析
通过利用Spring Boot中的缓存支持,开发者可以轻松地实现高效和可扩展的缓存策略,进而提升应用的性能和用户体验。Spring Boot的声明式缓存抽象和对多种缓存技术的支持,使得集成和使用缓存变得前所未有的简单。无论是在开发新应用还是优化现有应用,合理地使用缓存都是提高性能的有效手段。
60 1
|
5月前
|
缓存 Java Spring
Spring缓存实践指南:从入门到精通的全方位攻略!
【8月更文挑战第31天】在现代Web应用开发中,性能优化至关重要。Spring框架提供的缓存机制可以帮助开发者轻松实现数据缓存,提升应用响应速度并减少服务器负载。通过简单的配置和注解,如`@Cacheable`、`@CachePut`和`@CacheEvict`,可以将缓存功能无缝集成到Spring应用中。例如,在配置文件中启用缓存支持并通过`@Cacheable`注解标记方法即可实现缓存。此外,合理设计缓存策略也很重要,需考虑数据变动频率及缓存大小等因素。总之,Spring缓存机制为提升应用性能提供了一种简便快捷的方式。
66 0
|
5月前
|
缓存 NoSQL Java
惊!Spring Boot遇上Redis,竟开启了一场缓存实战的革命!
【8月更文挑战第29天】在互联网时代,数据的高速读写至关重要。Spring Boot凭借简洁高效的特点广受开发者喜爱,而Redis作为高性能内存数据库,在缓存和消息队列领域表现出色。本文通过电商平台商品推荐系统的实战案例,详细介绍如何在Spring Boot项目中整合Redis,提升系统响应速度和用户体验。
81 0
|
8月前
|
存储 缓存 Java
【Spring原理高级进阶】有Redis为啥不用?深入剖析 Spring Cache:缓存的工作原理、缓存注解的使用方法与最佳实践
【Spring原理高级进阶】有Redis为啥不用?深入剖析 Spring Cache:缓存的工作原理、缓存注解的使用方法与最佳实践
|
8月前
|
缓存 Java 数据库
优化您的Spring应用程序:缓存注解的精要指南
优化您的Spring应用程序:缓存注解的精要指南
119 0
|
8月前
|
缓存 NoSQL Java
Spring Cache之本地缓存注解@Cacheable,@CachePut,@CacheEvict使用
SpringCache不支持灵活的缓存时间和集群,适合数据量小的单机服务或对一致性要求不高的场景。`@EnableCaching`启用缓存。`@Cacheable`用于缓存方法返回值,`value`指定缓存名称,`key`定义缓存键,可按SpEL编写,`unless`决定是否不缓存空值。当在类上使用时,类内所有方法都支持缓存。`@CachePut`每次执行方法后都会更新缓存,而`@CacheEvict`用于清除缓存,支持按键清除或全部清除。Spring Cache结合Redis可支持集群环境。
438 6