二、整合检索服务
我们把检索服务单独作为一个服务。就称作 passjava-search 模块吧。
1.1 添加搜索服务模块
- 创建 passjava-search 模块。
首先我们在 PassJava-Platform 模块创建一个 搜索服务模块 passjava-search。然后勾选 spring web 服务。如下图所示。
第一步:选择 Spring Initializr,然后点击 Next。
第二步:填写模块信息,然后点击 Next。
第三步:选择 Web->Spring Web 依赖,然后点击 Next。
1.2 配置 Maven 依赖
- 参照 ES 官网配置。
进入到 ES 官方网站,可以看到有低级和高级的 Rest Client,我们选择高阶的(High Level Rest Client)。然后进入到高阶 Rest Client 的 Maven 仓库。官网地址如下所示:
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.9/index.html
- 加上 Maven 依赖。
对应文件路径:\passjava-search\pom.xml
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>7.4.2</version>
</dependency>
- 配置 elasticsearch 的版本为7.4.2
因加上 Maven 依赖后,elasticsearch 版本为 7.6.2,所以遇到这种版本不一致的情况时,需要手动改掉。
对应文件路径:\passjava-search\pom.xml
<properties>
<elasticsearch.version>7.4.2</elasticsearch.version>
</properties>
刷新 Maven Project 后,可以看到引入的 elasticsearch 都是 7.4.2 版本了,如下图所示:
- 引入 PassJava 的 Common 模块依赖。
Common 模块是 PassJava 项目独立的出来的公共模块,引入了很多公共组件依赖,其他模块引入 Common 模块依赖后,就不需要单独引入这些公共组件了,非常方便。
对应文件路径:\passjava-search\pom.xml
<dependency>
<groupId>com.jackson0714.passjava</groupId>
<artifactId>passjava-common</artifactId>
<version>0.0.1-SNAPSHOT</version>
</dependency>
添加完依赖后,我们就可以将搜索服务注册到 Nacos
注册中心了。 Nacos 注册中心的用法在前面几篇文章中也详细讲解过,这里需要注意的是要先启动 Nacos 注册中心,才能正常注册 passjava-search 服务。
1.3 注册搜索服务到注册中心
修改配置文件:src/main/resources/application.properties。配置应用程序名、注册中心地址、注册中心的命名中间。
spring.application.name=passjava-search
spring.cloud.nacos.config.server-addr=127.0.0.1:8848
spring.cloud.nacos.config.namespace=passjava-search
给启动类
添加服务发现注解:@EnableDiscoveryClient
。这样 passjava-search 服务就可以被注册中心发现了。
因 Common 模块依赖数据源,但 search 模块不依赖数据源,所以 search 模块需要移除数据源依赖:
exclude = DataSourceAutoConfiguration.class
以上的两个注解如下所示:
@EnableDiscoveryClient
@SpringBootApplication(exclude = DataSourceAutoConfiguration.class)
public class PassjavaSearchApplication {
public static void main(String[] args) {
SpringApplication.run(PassjavaSearchApplication.class, args);
}
}
接下来我们添加一个 ES 服务的专属配置类,主要目的是自动加载一个 ES Client 来供后续 ES API 使用,不用每次都 new 一个 ES Client。
1.4 添加 ES 配置类
配置类:PassJavaElasticsearchConfig.java
核心方法就是 RestClient.builder 方法,设置好 ES 服务的 IP 地址、端口号、传输协议就可以了。最后自动加载了 RestHighLevelClient。
package com.jackson0714.passjava.search.config;
import org.apache.http.HttpHost;
import org.elasticsearch.client.RestClient;
import org.elasticsearch.client.RestHighLevelClient;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @Author: 公众号 | 悟空聊架构
* @Date: 2020/10/8 17:02
* @Site: www.passjava.cn
* @Github: https://github.com/Jackson0714/PassJava-Platform
*/
@Configuration
public class PassJavaElasticsearchConfig {
@Bean
// 给容器注册一个 RestHighLevelClient,用来操作 ES
// 参考官方文档:https://www.elastic.co/guide/en/elasticsearch/client/java-rest/7.9/java-rest-high-getting-started-initialization.html
public RestHighLevelClient restHighLevelClient() {
return new RestHighLevelClient(
RestClient.builder(
new HttpHost("192.168.56.10", 9200, "http")));
}
}
接下来我们测试下 ES Client 是否自动加载成功。
1.5 测试 ES Client 自动加载
在测试类 PassjavaSearchApplicationTests 中编写测试方法,打印出自动加载的 ES Client。期望结果是一个 RestHighLevelClient 对象。
package com.jackson0714.passjava.search;
import org.elasticsearch.client.RestHighLevelClient;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.beans.factory.annotation.Qualifier;
import org.springframework.boot.test.context.SpringBootTest;
@SpringBootTest
class PassjavaSearchApplicationTests {
@Qualifier("restHighLevelClient")
@Autowired
private RestHighLevelClient client;
@Test
public void contextLoads() {
System.out.println(client);
}
}
运行结果如下所示,打印出了 RestHighLevelClient。说明自定义的 ES Client 自动装载成功。
1.6 测试 ES 简单插入数据
测试方法 testIndexData,省略 User 类。users 索引在我的 ES 中是没有记录的,所以期望结果是 ES 中新增了一条 users 数据。
/**
* 测试存储数据到 ES。
* */
@Test
public void testIndexData() throws IOException {
IndexRequest request = new IndexRequest("users");
request.id("1"); // 文档的 id
//构造 User 对象
User user = new User();
user.setUserName("PassJava");
user.setAge("18");
user.setGender("Man");
//User 对象转为 JSON 数据
String jsonString = JSON.toJSONString(user);
// JSON 数据放入 request 中
request.source(jsonString, XContentType.JSON);
// 执行插入操作
IndexResponse response = client.index(request, RequestOptions.DEFAULT);
System.out.println(response);
}
执行 test 方法,我们可以看到控制台输出以下结果,说明数据插入到 ES 成功。另外需要注意的是结果中的 result 字段为 updated,是因为我本地为了截图,多执行了几次插入操作,但因为 id = 1,所以做的都是 updated 操作,而不是 created 操作。
我们再来到 ES 中看下 users 索引中数据。查询 users 索引:
GET users/_search
结果如下所示:
可以从图中看到有一条记录被查询出来,查询出来的数据的 _id = 1,和插入的文档 id 一致。另外几个字段的值也是一致的。说明插入的数据没有问题。
"age" : "18",
"gender" : "Man",
"userName" : "PassJava"
1.7 测试 ES 查询复杂语句
示例:搜索 bank 索引,address 字段中包含 big 的所有人的年龄分布 ( 前 10 条 ) 以及平均年龄,以及平均薪资。
1.7.1 构造检索条件
我们可以参照官方文档给出的示例来创建一个 SearchRequest 对象,指定要查询的索引为 bank,然后创建一个 SearchSourceBuilder 来组装查询条件。总共有三种条件需要组装:
- address 中包含 road 的所有人。
- 按照年龄分布进行聚合。
- 计算平均薪资。
代码如下所示,需要源码请到我的 Github/PassJava 上下载。
将打印出来的检索参数复制出来,然后放到 JSON 格式化工具中格式化一下,再粘贴到 ES 控制台执行,发现执行结果是正确的。
用在线工具格式化 JSON 字符串,结果如下所示:
然后我们去掉其中的一些默认参数,最后简化后的检索参数放到 Kibana 中执行。
Kibana Dev Tools 控制台中执行检索语句如下图所示,检索结果如下图所示:
找到总记录数:29 条。
第一条命中记录的详情如下:
平均 balance:13136。平均年龄:26。
地址中包含 Road 的:263 Aviation Road。
和 IDEA 中执行的测试结果一致,说明复杂检索的功能已经成功实现。
17.2 获取命中记录的详情
而获取命中记录的详情数据,则需要通过两次 getHists() 方法拿到,如下所示:
// 3.1)获取查到的数据。
SearchHits hits = response.getHits();
// 3.2)获取真正命中的结果
SearchHit[] searchHits = hits.getHits();
我们可以通过遍历 searchHits 的方式打印出所有命中结果的详情。
// 3.3)、遍历命中结果
for (SearchHit hit: searchHits) {
String hitStr = hit.getSourceAsString();
BankMember bankMember = JSON.parseObject(hitStr, BankMember.class);
}
拿到每条记录的 hitStr 是个 JSON 数据,如下所示:
{
"account_number": 431,
"balance": 13136,
"firstname": "Laurie",
"lastname": "Shaw",
"age": 26,
"gender": "F",
"address": "263 Aviation Road",
"employer": "Zillanet",
"email": "laurieshaw@zillanet.com",
"city": "Harmon",
"state": "WV"
}
而 BankMember 是根据返回的结果详情定义的的 JavaBean。可以通过工具自动生成。在线生成 JavaBean 的网站如下:
https://www.bejson.com/json2javapojo/new/
把这个 JavaBean 加到 PassjavaSearchApplicationTests 类中:
@ToString
@Data
static class BankMember {
private int account_number;
private int balance;
private String firstname;
private String lastname;
private int age;
private String gender;
private String address;
private String employer;
private String email;
private String city;
private String state;
}
然后将 bankMember 打印出来:
System.out.println(bankMember);
得到的结果确实是我们封装的 BankMember 对象,而且里面的属性值也都拿到了。
1.7.3 获取年龄分布聚合信息
ES 返回的 response 中,年龄分布的数据是按照 ES 的格式返回的,如果想按照我们自己的格式来返回,就需要将 response 进行处理。
如下图所示,这个是查询到的年龄分布结果,我们需要将其中某些字段取出来,比如 buckets,它代表了分布在 21 岁的有 4 个。
下面是代码实现:
Aggregations aggregations = response.getAggregations();
Terms ageAgg1 = aggregations.get("ageAgg");
for (Terms.Bucket bucket : ageAgg1.getBuckets()) {
String keyAsString = bucket.getKeyAsString();
System.out.println("用户年龄: " + keyAsString + " 人数:" + bucket.getDocCount());
}
最后打印的结果如下,21 岁的有 4 人,26 岁的有 4 人,等等。
1.7.4 获取平均薪资聚合信息
现在来看看平均薪资如何按照所需的格式返回,ES 返回的结果如下图所示,我们需要获取 balanceAvg 字段的 value 值。
代码实现:
Avg balanceAvg1 = aggregations.get("balanceAvg");
System.out.println("平均薪资:" + balanceAvg1.getValue());
打印结果如下,平均薪资 28578 元。