tensorflow2.0卷积神经网络MNIST实战

简介: tensorflow2.0卷积神经网络MNIST实战
import tensorflow as tf
import pandas as pd


import numpy as np


import matplotlib.pyplot as plt


%matplotlib inline


(x_train, y_train), (x_test, y_test) = tf.keras.datasets.mnist.load_data()



img_rows, img_cols = 28, 28


if tf.keras.backend.image_data_format() == 'channels_first':
    x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
    x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
    input_shape = (1, img_rows, img_cols)
else:
    x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
    x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
    input_shape = (img_rows, img_cols, 1)
input_shape = (1, 28, 28)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train = x_train / 255
x_test = x_test / 255
x_train.shape
(60000, 28, 28, 1)
# 独热编码
y_train_onehot = tf.keras.utils.to_categorical(y_train)
y_test_onehot = tf.keras.utils.to_categorical(y_test)
# 搭建卷积神经模型
model = tf.keras.Sequential()
model.add(tf.keras.layers.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Conv2D(64, kernel_size=(3, 3), activation='relu'))
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2)))
model.add(tf.keras.layers.Flatten())
model.add(tf.keras.layers.Dense(128, activation='relu'))
model.add(tf.keras.layers.Dropout(0.5))
model.add(tf.keras.layers.Dense(10, activation='softmax'))
model.summary()

图片.png

Model: "sequential_1"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_2 (Conv2D)            (None, 26, 26, 32)        320       
_________________________________________________________________
max_pooling2d_2 (MaxPooling2 (None, 13, 13, 32)        0         
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 11, 11, 64)        18496     
_________________________________________________________________
max_pooling2d_3 (MaxPooling2 (None, 5, 5, 64)          0         
_________________________________________________________________
flatten_1 (Flatten)          (None, 1600)              0         
_________________________________________________________________
dense_2 (Dense)              (None, 128)               204928    
_________________________________________________________________
dropout_1 (Dropout)          (None, 128)               0         
_________________________________________________________________
dense_3 (Dense)              (None, 10)                1290      
=================================================================
Total params: 225,034
Trainable params: 225,034
Non-trainable params: 0
_________________________________________________________________
# 设置优化器、损失函数
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
# 模型训练
history = model.fit(x_train, y_train_onehot, batch_size = 256, epochs = 10, verbose=1, validation_data = (x_test, y_test_onehot))

图片.png

Epoch 1/10
235/235 [==============================] - 20s 85ms/step - loss: 0.3861 - accuracy: 0.8831 - val_loss: 0.0713 - val_accuracy: 0.9781
Epoch 2/10
235/235 [==============================] - 19s 82ms/step - loss: 0.1077 - accuracy: 0.9687 - val_loss: 0.0496 - val_accuracy: 0.9840
Epoch 3/10
235/235 [==============================] - 21s 89ms/step - loss: 0.0787 - accuracy: 0.9769 - val_loss: 0.0384 - val_accuracy: 0.9874
Epoch 4/10
235/235 [==============================] - 20s 86ms/step - loss: 0.0668 - accuracy: 0.9799 - val_loss: 0.0342 - val_accuracy: 0.9881
Epoch 5/10
235/235 [==============================] - 21s 89ms/step - loss: 0.0547 - accuracy: 0.9832 - val_loss: 0.0331 - val_accuracy: 0.9885
Epoch 6/10
235/235 [==============================] - 19s 81ms/step - loss: 0.0499 - accuracy: 0.9843 - val_loss: 0.0276 - val_accuracy: 0.9903
Epoch 7/10
235/235 [==============================] - 20s 83ms/step - loss: 0.0436 - accuracy: 0.9869 - val_loss: 0.0280 - val_accuracy: 0.9908
Epoch 8/10
235/235 [==============================] - 20s 83ms/step - loss: 0.0404 - accuracy: 0.9879 - val_loss: 0.0265 - val_accuracy: 0.9905
Epoch 9/10
235/235 [==============================] - 20s 83ms/step - loss: 0.0362 - accuracy: 0.9888 - val_loss: 0.0272 - val_accuracy: 0.9912
Epoch 10/10
235/235 [==============================] - 19s 82ms/step - loss: 0.0336 - accuracy: 0.9895 - val_loss: 0.0273 - val_accuracy: 0.9906
score = model.evaluate(x_test, y_test_onehot, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
Test loss: 0.027276480570435524
Test accuracy: 0.9905999898910522
相关文章
|
1月前
|
数据采集 存储 JSON
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第27天】本文介绍了Python网络爬虫Scrapy框架的实战应用与技巧。首先讲解了如何创建Scrapy项目、定义爬虫、处理JSON响应、设置User-Agent和代理,以及存储爬取的数据。通过具体示例,帮助读者掌握Scrapy的核心功能和使用方法,提升数据采集效率。
105 6
|
16天前
|
存储 安全 网络安全
网络安全的盾与剑:漏洞防御与加密技术的实战应用
在数字化浪潮中,网络安全成为保护信息资产的重中之重。本文将深入探讨网络安全的两个关键领域——安全漏洞的防御策略和加密技术的应用,通过具体案例分析常见的安全威胁,并提供实用的防护措施。同时,我们将展示如何利用Python编程语言实现简单的加密算法,增强读者的安全意识和技术能力。文章旨在为非专业读者提供一扇了解网络安全复杂世界的窗口,以及为专业人士提供可立即投入使用的技术参考。
|
19天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
54 7
|
1月前
|
数据采集 前端开发 中间件
Python网络爬虫:Scrapy框架的实战应用与技巧分享
【10月更文挑战第26天】Python是一种强大的编程语言,在数据抓取和网络爬虫领域应用广泛。Scrapy作为高效灵活的爬虫框架,为开发者提供了强大的工具集。本文通过实战案例,详细解析Scrapy框架的应用与技巧,并附上示例代码。文章介绍了Scrapy的基本概念、创建项目、编写简单爬虫、高级特性和技巧等内容。
76 4
|
1月前
|
网络协议 物联网 API
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第26天】Python 是一门功能强大且易于学习的编程语言,Twisted 框架以其事件驱动和异步IO处理能力,在网络编程领域独树一帜。本文深入探讨 Twisted 的异步IO机制,并通过实战示例展示其强大功能。示例包括创建简单HTTP服务器,展示如何高效处理大量并发连接。
51 1
|
1月前
|
网络协议 安全 NoSQL
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练等具体操作详解步骤;精典图示举例说明、注意点及常见报错问题所对应的解决方法IKUN和I原们你这要是学不会我直接退出江湖;好吧!!!
网络空间安全之一个WH的超前沿全栈技术深入学习之路(8-2):scapy 定制 ARP 协议 、使用 nmap 进行僵尸扫描-实战演练、就怕你学成黑客啦!
|
1月前
|
网络协议 调度 开发者
Python网络编程:Twisted框架的异步IO处理与实战
【10月更文挑战第27天】本文介绍了Python网络编程中的Twisted框架,重点讲解了其异步IO处理机制。通过反应器模式,Twisted能够在单线程中高效处理多个网络连接。文章提供了两个实战示例:一个简单的Echo服务器和一个HTTP服务器,展示了Twisted的强大功能和灵活性。
43 0
|
5天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
111 55
|
23天前
|
机器学习/深度学习 数据采集 数据可视化
TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤
本文介绍了 TensorFlow,一款由谷歌开发的开源深度学习框架,详细讲解了使用 TensorFlow 构建深度学习模型的步骤,包括数据准备、模型定义、损失函数与优化器选择、模型训练与评估、模型保存与部署,并展示了构建全连接神经网络的具体示例。此外,还探讨了 TensorFlow 的高级特性,如自动微分、模型可视化和分布式训练,以及其在未来的发展前景。
55 5
|
1月前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
78 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络