哎,这让人抠脑壳的 LFU。 (中)

简介: 哎,这让人抠脑壳的 LFU。 (中)

image.png

你说这个时候会发生什么事情?

链表中的 c 当前的访问频率是 1,当这个 c 请求过来后,那么链表中的 c 的频率就会变成 2。

你说巧不巧,此时,value=b 节点的频率也是 2。

撞车了,那么你说,这个时候怎么办?

前面说了:频率一样的时候,看时间。

value=c 的节点是正在被访问的,所以要淘汰也应该淘汰之前被访问的 value=b 的节点。

此时的链表,就应该是这样的:

image.png

d 元素,之前没有在链表里面出现过,而此时链表的容量也满了。

该进行淘汰了。

于是把 head 的下一个节点(value=b)淘汰,并把 value=d 的节点插入:

image.png

最终,所有请求完毕。

留在缓存中的是 d,c,a 这三个元素。

整体的流程就是这样的:

image.png

当然,这里只是展示了链表的变化。

其实我们放的是 key-value 键值对。

所以应该还有一个 HashMap 来存储 key 和链表节点的映射关系。

这个简单,用脚趾头都能想到,我也就不展开来说了。

按照上面这个思路,你慢慢的写代码,应该是能写出来的。

上面这个双链表的方案,就是扣着脑壳硬想,大部分人能直接想到的方案。

面试官要的肯定是时间复杂度为 O(1) 的解决方案。

现在的这个解决方案时间复杂度为 O(N)。

image.png


O(1) 解法


如果我们要拿出时间复杂度为 O(1) 的解法,我们就得细细的分析了,不能扣着脑壳硬想了。

先分析一下需求。

第一点:我们需要根据 key 查询其对应的 value。

用脚趾头都能想到,用 HashMap 存储 key-value 键值对。

查询时间复杂度为 O(1),满足。

第二点:每当我们操作一个 key 的时候,不论是查询还是新增,都需要维护这个 key 的频次,记作 freq。

因为我们需要频繁的操作 key 对应的 freq,也就是得在时间复杂度为 O(1) 的情况下,获取到指定 key 的 freq。

来,请你大声的告诉我,用什么数据结构?

是不是还得再来一个 HashMap 存储 key 和 freq 的对应关系?

第三点:如果缓存里面放不下了,需要淘汰数据的时候,把 freq 最小的 key 删除掉。

注意啊,上面这句话:[把 freq 最小的 key 删除掉]。

freq 最小?

我们怎么知道哪个 key 的 freq 最小呢?

前面说了,有一个 HashMap 存储 key 和 freq 的对应关系。

当然我们可以遍历这个 HashMap,来获取到 freq 最小的 key。

但是啊,朋友们,遍历出现了,那么时间复杂度还会是 O(1) 吗?

那怎么办呢?

注意啊,高潮来了,一学就废,一点就破。

我们可以搞个变量来记录这个最小的 freq 啊,记为 minFreq,不就行了?


image.png


现在我们有最小频次(minFreq)了,需要获取到这个最小频次对应的 key,时间复杂度得为 O(1)。

来,朋友,请你大声的告诉我,你又想起了什么数据结构?

是不是又想到了 HashMap?

好了,我们现在有三个 HashMap 了,给大家介绍一下:

  • 一个存储 key 和 value 的 HashMap,即HashMap<key,value>。
  • 一个存储 key 和 freq 的 HashMap,即HashMap<key,freq>。
  • 一个存储 freq 和 key 的 HashMap,即HashMap<freq,key>。

它们每个都是各司其职,目的都是为了时间复杂度为 O(1)。

但是我们可以把前两个 HashMap 合并一下。

我们弄一个对象,对象里面包含两个属性分别是value、freq。

假设这个对象叫做 Node,它就是这样的,频次默认为 1:

class Node {
    int value;
    int freq = 1;
    //构造函数省略
}

那么现在我们就可以把前面两个 HashMap ,替换为一个了,即 HashMap<key,Node>。

同理,我们可以在 Node 里面再加入一个 key 属性:

class Node {
    int key;
    int value;
    int freq = 1;
    //构造函数省略
}

因为 Node 里面包含了 key,所以可以把第三个 HashMap<freq,key> 替换为 HashMap<freq,Node>。

到这一步,我们还差了一个非常关键的信息没有补全,就是下面这一个点。

第四点:可能有多个 key 具有相同的最小的 freq,此时移除这一批数据在缓存中待的时间最长的那个元素。

这个需求,我们需要通过 freq 查找 Node,那么操作的就是 HashMap<freq,Node> 这个哈希表。

上面说[多个 key 具有相同的最小的 freq],也就是说通过 minFreq ,是可以查询到多个 Node 的。

所以HashMap<freq,Node> 这个哈希表,应该是这样的:

HashMap<freq,集合>。

此时的问题就变成了:我们应该用什么集合来装这个 Node 对象呢?

不慌,我们先理一下这个集合需要满足什么条件。

首先,需要删除 Node 的时候。

因为这个集合里面装的是访问频次一样的数据,那么希望这批数据能有时序,这样可以快速的删除待的时间最久的 Node。

有时序,能快速查找删除待的时间最久的 key,你能想到什么数据结构?

这不就是双向链表吗?

然后,需要访问 Node 的时候。

一个 Node 被访问,那么它的频次必然就会加一。

目录
相关文章
|
7月前
|
存储 缓存 算法
LRU(Least Recently Used)算法原理
LRU(Least Recently Used)算法原理
119 0
|
8月前
|
缓存 算法 Java
淘汰算法
【4月更文挑战第21天】这篇内容介绍了两种主流的淘汰算法:LRU(Least Recently Used)和LFU(Least Frequently Used)。LRU基于最近最少使用原则,当缓存满时,淘汰最近最久未使用的键。实现上通常使用链表和Java的LinkedHashMap。而LFU根据访问次数淘汰最不常使用的对象,可以按访问频率排序并选择淘汰。LFU的变种可能关注一定时间窗口内的访问次数,实现上更复杂。
54 1
|
8月前
|
算法 测试技术 C++
【状态压缩】【动态规划】【C++算法】691贴纸拼词
【状态压缩】【动态规划】【C++算法】691贴纸拼词
|
存储 NoSQL 算法
【LFU】一文让你弄清 Redis LFU 页面置换算法
【LFU】一文让你弄清 Redis LFU 页面置换算法
129 1
|
存储 缓存 算法
【算法】LFU及其优化
【算法】LFU及其优化
195 0
|
存储 缓存 算法
实现一个LRU真的好难呐
实现一个LRU真的好难呐
103 0
|
Java
红黑树(上)调色篇
红黑树是配合二叉树的一种实现,主要要满足以下性质: 1.根节点必须为黑色 2.父子不能同为红色 3.从任何节点出发,到达叶节点经过的黑色节点数量一致 对每个新插入的节点存在以下情况: 1.没有爸爸: 那么它自己变为黑色,做根节点。
95 0
|
机器学习/深度学习 存储 算法
自适应共振网络理论-2|学习笔记
快速学习自适应共振网络理论-2
自适应共振网络理论-2|学习笔记
|
机器学习/深度学习 缓存 算法
面试高频算法详解-LRU
面试高频算法详解-LRU
面试高频算法详解-LRU
|
缓存 算法 Dubbo
哎,这让人抠脑壳的 LFU。 (下)
哎,这让人抠脑壳的 LFU。 (下)
161 0
哎,这让人抠脑壳的 LFU。 (下)