Google Earth Engine ——全球 25m PALSAR/PALSAR-2数据集

简介: Google Earth Engine ——全球 25m PALSAR/PALSAR-2数据集

The global 25m PALSAR/PALSAR-2 mosaic is a seamless global SAR image created by mosaicking strips of SAR imagery from PALSAR/PALSAR-2. For each year and location, the strip data were selected through visual inspection of the browse mosaics available over the period, with those showing minimum response to surface moisture preferentially used. In cases where the availability was limited (e.g., because of the requirement for observations during specific emergencies), data were necessarily selected from the year before or after, including from 2006.


Shimada et al. 2014

The SAR imagery was ortho-rectificatied and slope corrected using the 90m SRTM Digital Elevation Model. A destriping process (Shimada & Isoguchi, 2002, 2010) was applied to equalize the intensity differences between neighboring strips, occurring largely due to seasonal and daily differences in surface moisture conditions.

Polarization data are stored as 16-bit digital numbers (DN). The DN values can be converted to gamma naught values in decibel unit (dB) using the following equation:

  • γ₀ = 10log₁₀(DN²) - 83.0 dB

Attention:

  • Backscatter values may vary significantly from path to path over high latitude forest areas. This is due to the change of backscattering intensity caused by freezing trees in winter.


全球 25m PALSAR/PALSAR-2 拼接图是由 PALSAR/PALSAR-2 的 SAR 影像条带拼接而成的无缝全球 SAR 影像。对于每一年和地点,条带数据是通过目视检查这段时间内可用的浏览马赛克来选择的,优先使用那些对表面水分反应最小的那些。在可用性有限的情况下(例如,由于需要在特定紧急情况下进行观察),必须从前一年或后一年中选择数据,包括 2006 年。 Shimada 等。 2014年


使用 90m SRTM 数字高程模型对 SAR 图像进行正射校正和斜率校正。去除条纹过程 (Shimada & Isoguchi, 2002, 2010) 用于平衡相邻条纹之间的强度差异,这主要是由于表面水分条件的季节性和日常差异造成的。


偏振数据存储为 16 位数字 (DN)。可以使用以下等式将 DN 值转换为以分贝为单位 (dB) 的伽马零值:


γ₀ = 10log₁₀(DN²) - 83.0 dB

注意力:


在高纬度森林地区,不同路径的反向散射值可能会有很大差异。这是由于冬季树木结冰引起后向散射强度的变化。

Dataset Availability

2007-01-01T00:00:00 - 2021-01-01T00:00:00

Dataset Provider

JAXA EORC

Collection Snippet

Copied

ee.ImageCollection("JAXA/ALOS/PALSAR/YEARLY/SAR")

Resolution

25 meters

Bands Table

Name Description
HH HH polarization backscattering coefficient, 16-bit DN.
HV HV polarization backscattering coefficient, 16-bit DN.
angle Local incidence angle (degrees).
date Observation date (days since Jan 1, 1970).
qa Processing information.

Class Table: qa

Value Color Color Value Description
0 #000000 No data
50 #0000FF Ocean and water
100 #AAAA00 Radar layover
150 #005555 Radar shadowing
255 #AA9988 Land


数据说明:JAXA retains ownership of the dataset and cannot guarantee any problem caused by or possibly caused by using the datasets. Anyone wishing to publish any results using the datasets should clearly acknowledge the ownership of the data in the publication.

引用:

Masanobu Shimada, Takuya Itoh, Takeshi Motooka, Manabu Watanabe, Shiraishi Tomohiro, Rajesh Thapa, and Richard Lucas, "New Global Forest/Non-forest Maps from ALOS PALSAR Data (2007-2010)", Remote Sensing of Environment, 155, pp. 13-31, December 2014. doi:10.1016/j.rse.2014.04.014.


代码:

var dataset = ee.ImageCollection('JAXA/ALOS/PALSAR/YEARLY/SAR')
                  .filter(ee.Filter.date('2017-01-01', '2018-01-01'));
var sarHh = dataset.select('HH');
var sarHhVis = {
  min: 0.0,
  max: 10000.0,
};
Map.setCenter(136.85, 37.37, 4);
Map.addLayer(sarHh, sarHhVis, 'SAR HH');


相关文章
|
6月前
|
数据可视化 定位技术 Sentinel
如何用Google Earth Engine快速、大量下载遥感影像数据?
【2月更文挑战第9天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,批量下载指定时间范围、空间范围的遥感影像数据(包括Landsat、Sentinel等)的方法~
2342 1
如何用Google Earth Engine快速、大量下载遥感影像数据?
|
6月前
|
编解码 人工智能 算法
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
Google Earth Engine——促进森林温室气体报告的全球时间序列数据集
84 0
|
6月前
|
机器学习/深度学习 算法 数据可视化
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
基于Google Earth Engine云平台构建的多源遥感数据森林地上生物量AGB估算模型含生物量模型应用APP
217 0
|
6月前
|
存储 编解码 数据可视化
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
【2月更文挑战第14天】本文介绍在谷歌地球引擎(Google Earth Engine,GEE)中,按照给定的地表分类数据,对每一种不同的地物类型,分别加以全球范围内随机抽样点自动批量选取的方法~
524 1
Google Earth Engine获取随机抽样点并均匀分布在栅格的不同数值区中
|
6月前
|
数据处理
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
Google Earth Engine(GEE)——sentinel-1数据处理过程中出现错误Dictionary does not contain key: bucketMeans
107 0
|
6月前
|
编解码 人工智能 数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
Google Earth Engine(GEE)——全球道路盘查项目全球道路数据库
126 0
|
6月前
|
编解码
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
Open Google Earth Engine(OEEL)——matrixUnit(...)中产生常量影像
74 0
|
6月前
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
Google Earth Engine(GEE)——导出指定区域的河流和流域范围
252 0
|
6月前
|
传感器 编解码 数据处理
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
Open Google Earth Engine(OEEL)——哨兵1号数据的黑边去除功能附链接和代码
116 0
|
6月前
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
Google Earth Engine(GEE)——当加载图表的时候出现错误No features contain non-null values of “system:time_start“.
120 0