【JVM】JVM系列之垃圾回收(二)(2)

简介:   如果不进行垃圾回收,内存迟早都会被消耗空,因为我们在不断的分配内存空间而不进行回收。除非内存无限大,我们可以任性的分配而不回收,但是事实并非如此。所以,垃圾回收是必须的。

六、方法区的垃圾回收


  方法区的垃圾回收主要回收两部分内容:1. 废弃常量。2. 无用的类。既然进行垃圾回收,就需要判断哪些是废弃常量,哪些是无用的类。


  如何判断废弃常量呢?以字面量回收为例,如果一个字符串“abc”已经进入常量池,但是当前系统没有任何一个String对象引用了叫做“abc”的字面量,那么,如果发生垃圾回收并且有必要时,“abc”就会被系统移出常量池。常量池中的其他类(接口)、方法、字段的符号引用也与此类似。


  如何判断无用的类呢?需要满足以下三个条件


    1. 该类的所有实例都已经被回收,即Java堆中不存在该类的任何实例。


    2. 加载该类的ClassLoader已经被回收。


    3. 该类对应的java.lang.Class对象没有在任何地方被引用,无法在任何地方通过反射访问该类的方法。


  满足以上三个条件的类可以进行垃圾回收,但是并不是无用就被回收,虚拟机提供了一些参数供我们配置。


七、垃圾收集算法


  垃圾收集的主要算法有如下几种:


    1. 标记 - 清除算法

    2. 复制算法

    3. 标记 - 整理算法

    4. 分代收集算法

  7.1 标记 - 清除算法


  首先标记出所有需要回收的对象,使用可达性分析算法判断一个对象是否为可回收,在标记完成后统一回收所有被标记的对象。下图是算法具体的一次执行过程后的结果对比。


image.png


说明:1.效率问题,标记和清除两个阶段的效率都不高。2.空间问题,标记清除后会产生大量不连续的内存碎片,以后需要给大对象分配内存时,会提前触发一次垃圾回收动作。


  7.2 复制算法


  将内存分为两等块,每次使用其中一块。当这一块内存用完后,就将还存活的对象复制到另外一个块上面,然后再把已经使用过的内存空间一次清理掉。图是算法具体的一次执行过程后的结果对比。


image.png


说明:1.无内存碎片问题。2.可用内存缩小为原来的一半。 3.当存活的对象数量很多时,复制的效率很慢。


  7.3 标记 - 整理算法


  标记过程还是和标记 - 清除算法一样,之后让所有存活的对象都向一端移动,然后直接清理掉边界以外的内存,标记 - 整理算法示意图如下


image.png


说明:1.无需考虑内存碎片问题。


  7.4 分代收集算法


  把堆分为新生代和老年代,然后根据各年代的特点选择最合适的回收算法。在新生代基本上都是朝生暮死的,生存时间很短暂,因此可以采拥标记 - 复制算法,只需要复制少量的对象就可以完成收集。而老年代中的对象存活率高,也没有额外的空间进行分配担保,因此必须使用标记 - 整理或者标记 - 清除算法进行回收。


八、HotSpot的算法实现


  对于可达性分析而言,我们知道,首先需要选取GCRoots结点,而GCRoots结点主要在全局性的引用(如常量或类静态属性)与执行上下文(如栈帧中的局部变量表)中。方法区可以很大,这对于寻找GCRoots结点来说会非常耗时。当选取了GCRoots结点之后,进行可达性分析时必须要保证一致性,即在进行分析的过程中整个执行系统看起来就好像被冻结在某个时间点上,不可以在分析的时候,对象的关系还在动态变化,这样的话分析的准确性就得不到保证,所以可达性分析是时间非常敏感的。


  为了保证分析结果的准确性,就会导致GC进行时必须停顿所有Java执行线程(Stop the world),为了尽可能的减少Stop the world的时间,Java虚拟机使用了一组称为OopMap的数据结构,该数据结构用于存放对象引用的地址,这样,进行可达性分析的时候就可以直接访问OopMap就可以获得对象的引用,从而加快分析过程,减少Stop the world时间。


  OopMap数据结构有利于进行GC,是不是虚拟机无论何时想要进行GC都可以进行GC,即无论虚拟机在执行什么指令都可以进行GC?答案是否定的,因为要想让虚拟机无论在执行什么指令的时候都可以进行GC的话,需要为每条指令都生成OopMap,显然,这样太浪费空间了。为了节约宝贵的空间,虚拟机只在”特定的位置“存放了OopMap数据结构,这个特定的位置我们称之为安全点。程序执行时并非在所有地方都能够停顿下来开始GC(可达性分析),只有到达安全点的时候才能暂停。安全点可以由方法调用、循环跳转、异常跳转等指令产生,因为这些指令会让程序长时间执行。


  现在我们已经知道了安全点的概念,即进行GC必须要到达安全点,那么在发生GC时如何让所有线程到达安全点再暂停呢?有两种方法1. 抢先式中断,在发生GC时,首先把所有线程全部中断,如果发现线程中断的地方不在安全点上,就恢复线程,让它跑到安全点上。2. 主动式中断,在发生GC时,不中断线程,而是设置一个标志,所有线程执行时主动轮询这个标志,发生标志位真就自己中断挂起,轮询标志的地方和安全点是重合的,也有可能是创建对象需要分配内存的地方。


  现在问题又来了,当程序不执行的时候,如何让所有线程达到安全点呢?典型的就是线程处于Sleep状态或者Blocked状态,这时候线程是无法跑到安全点再中断自己的,虚拟机也肯定不可能等待该线程被唤醒并重新分配CPU时间后,跑到安全点再暂停。为了解决这个问题,引安全区域的概念。安全区域是对安全点的扩展,可以看成由很多安全点组成,安全区域是指一段代码片段之中,引用关系不会发生变化。在这个区域的任何地方开始GC都是安全的。当线程执行到安全区域的代码时,首先标示自己已经进入了安全区域,那么,在这段时间里JVM发起GC时,就不用管标示自己为安全区域状态的线程了。在线程奥离开安全区域时,它要检查系统是否已经完成了根节点枚举(或者整个GC过程),若完成,线程继续执行;否则,它必须等待直到收到可以安全离开安全区域的信号。


九、垃圾收集器


  垃圾收集器是内存回收的具体实现,HotSpot虚拟机包含的所有收集器如下:


image.png


说明:图中存在连线表示可以搭配使用,总共有7种不同分代的收集器。


  9.1 Serial收集器


  Serial收集器为单线程收集器,在进行垃圾收集时,必须要暂停其他所有的工作线程,直到它收集结束。运行过程如下图所示


image.png


说明:1. 需要STW(Stop The World),停顿时间长。2. 简单高效,对于单个CPU环境而言,Serial收集器由于没有线程交互开销,可以获取最高的单线程收集效率。


  9.2 ParNew收集器


  ParNew是Serial的多线程版本,除了使用多线程进行垃圾收集外,其他行为与Serial完全一样,运行过程如下图所示


image.png

说明:1.Server模式下虚拟机的首选新生收集器,与CMS进行搭配使用。


  9.3 Parallel Scavenge收集器


  Parallel Scavenge收集器的目标是达到一个可控制的吞吐量,吞吐量 = 运行用户代码时间 / (运行用户代码时间 + 垃圾收集时间),高吞吐量可以高效率地利用CPU时间,尽快完成程序的运算任务,主要适合在后台运算而不需要太多交互的任务,并且虚拟机会根据当前系统的运行情况收集性能监控信息,动态调整这些参数以提供最合适的停顿时间或者最大的吞吐量,这种调节方式称为GC自适应调节策略。


  9.4 Serial Old收集器


  老年代的单线程收集器,使用标记 - 整理算法,运行过程在之前的Serial收集器已经给出。不再累赘。


  9.5 Parallel Old收集器


  老年代的多线程收集器,使用标记 - 整理算法,吞吐量优先,适合于Parallel Scavenge搭配使用,运行过程如下图所示


image.png

9.6 CMS收集器


  CMS(Conrrurent Mark Sweep)收集器是以获取最短回收停顿时间为目标的收集器。使用标记 - 清除算法,收集过程分为如下四步:


    1. 初始标记,标记GCRoots能直接关联到的对象,时间很短。


    2. 并发标记,进行GCRoots Tracing(可达性分析)过程,时间很长。


    3. 重新标记,修正并发标记期间因用户程序继续运作而导致标记产生变动的那一部分对象的标记记录,时间较长。


    4. 并发清除,回收内存空间,时间很长。


  其中,并发标记与并发清除两个阶段耗时最长,但是可以与用户线程并发执行。运行过程如下图所示


image.png



  说明:1. 对CPU资源非常敏感,可能会导致应用程序变慢,吞吐率下降。2. 无法处理浮动垃圾,因为在并发清理阶段用户线程还在运行,自然就会产生新的垃圾,而在此次收集中无法收集他们,只能留到下次收集,这部分垃圾为浮动垃圾,同时,由于用户线程并发执行,所以需要预留一部分老年代空间提供并发收集时程序运行使用。3. 由于采用的标记 - 清除算法,会产生大量的内存碎片,不利于大对象的分配,可能会提前触发一次Full GC。虚拟机提供了-XX:+UseCMSCompactAtFullCollection参数来进行碎片的合并整理过程,这样会使得停顿时间变长,虚拟机还提供了一个参数配置,-XX:+CMSFullGCsBeforeCompaction,用于设置执行多少次不压缩的Full GC后,接着来一次带压缩的GC。



目录
相关文章
|
5月前
|
存储 算法 Oracle
极致八股文之JVM垃圾回收器G1&ZGC详解
本文作者分享了一些垃圾回收器的执行过程,希望给大家参考。
|
2月前
|
监控 算法 Java
Java虚拟机(JVM)的垃圾回收机制深度解析####
本文深入探讨了Java虚拟机(JVM)的垃圾回收机制,旨在揭示其背后的工作原理与优化策略。我们将从垃圾回收的基本概念入手,逐步剖析标记-清除、复制算法、标记-整理等主流垃圾回收算法的原理与实现细节。通过对比不同算法的优缺点及适用场景,为开发者提供优化Java应用性能与内存管理的实践指南。 ####
|
1月前
|
监控 算法 Java
Java虚拟机(JVM)垃圾回收机制深度剖析与优化策略####
本文作为一篇技术性文章,深入探讨了Java虚拟机(JVM)中垃圾回收的工作原理,详细分析了标记-清除、复制算法、标记-压缩及分代收集等主流垃圾回收算法的特点和适用场景。通过实际案例,展示了不同GC(Garbage Collector)算法在应用中的表现差异,并针对大型应用提出了一系列优化策略,包括选择合适的GC算法、调整堆内存大小、并行与并发GC调优等,旨在帮助开发者更好地理解和优化Java应用的性能。 ####
44 0
|
15天前
|
算法 网络协议 Java
【JVM】——GC垃圾回收机制(图解通俗易懂)
GC垃圾回收,标识出垃圾(计数机制、可达性分析)内存释放机制(标记清除、复制算法、标记整理、分代回收)
|
1月前
|
存储 监控 算法
Java虚拟机(JVM)垃圾回收机制深度解析与优化策略####
本文旨在深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法及参数调优方法。通过剖析垃圾回收的生命周期、内存区域划分以及GC日志分析,为开发者提供一套实用的JVM垃圾回收优化指南,助力提升Java应用的性能与稳定性。 ####
|
2月前
|
机器学习/深度学习 监控 算法
Java虚拟机(JVM)的垃圾回收机制深度剖析####
本文深入探讨Java虚拟机(JVM)的垃圾回收机制,揭示其工作原理、常见算法、性能调优策略及未来趋势。通过实例解析,为开发者提供优化Java应用性能的思路与方法。 ####
58 1
|
2月前
|
监控 算法 Java
Java虚拟机垃圾回收机制深度剖析与优化策略####
【10月更文挑战第21天】 本文旨在深入探讨Java虚拟机(JVM)中的垃圾回收机制,揭示其工作原理、常见算法及参数调优技巧。通过案例分析,展示如何根据应用特性调整GC策略,以提升Java应用的性能和稳定性,为开发者提供实战中的优化指南。 ####
47 5
|
2月前
|
存储 算法 安全
JVM常见面试题(四):垃圾回收
堆区域划分,对象什么时候可以被垃圾器回收,如何定位垃圾——引用计数法、可达性分析算法,JVM垃圾回收算法——标记清除算法、标记整理算法、复制算法、分代回收算法;JVM垃圾回收器——串行、并行、CMS垃圾回收器、G1垃圾回收器;强引用、软引用、弱引用、虚引用
|
2月前
|
存储 算法 Java
JVM进阶调优系列(10)敢向stop the world喊卡的G1垃圾回收器 | 有必要讲透
本文详细介绍了G1垃圾回收器的背景、核心原理及其回收过程。G1,即Garbage First,旨在通过将堆内存划分为多个Region来实现低延时的垃圾回收,每个Region可以根据其垃圾回收的价值被优先回收。文章还探讨了G1的Young GC、Mixed GC以及Full GC的具体流程,并列出了G1回收器的核心参数配置,帮助读者更好地理解和优化G1的使用。
|
2月前
|
监控 Java 测试技术
Elasticsearch集群JVM调优垃圾回收器的选择
Elasticsearch集群JVM调优垃圾回收器的选择
67 1