Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
发现很多同学都是以1,1为重复头,按照最多循环次数48来做的
我也参考了一些答案,发现:
1,不能以1,1 作为重复头;
2,自己先找周期。
#include<iostream> #include<stdio.h> using namespace std; int f[100000005]; int main() { int a,b,n,i,j; f[1]=1;f[2]=1; while(scanf("%d%d%d",&a,&b,&n)) { int s=0;//记录周期 if(a==0&&b==0&&n==0) break; for(i=3;i<=n;i++) { f[i]=(a*f[i-1]+b*f[i-2])%7; for(j=2;j<i;j++) if(f[i-1]==f[j-1]&&f[i]==f[j]) //此题可以这样做的原因就是 2个确定后就可以决定后面的 { s=i-j; //cout<<j<<" "<<s<<" >>"<<i<<endl; break; } if(s>0) break; } if(s>0){ f[n]=f[(n-j)%s+j]; //cout<<"f["<<n<<"]:="<<"f["<<(n-j)%s+j<<"] "<<endl; } cout<<f[n]<<endl; } return 0; }