Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3
1 2 10
0 0 0
Sample Output
2
5
对于公式 f[n] = A * f[n-1] + B * f[n-2]; 后者只有7 * 7 = 49 种可能,为什么这么说,因为对于f[n-1] 或者 f[n-2] 的取值只有 0,1,2,3,4,5,6 这7个数,A,B又是固定的,所以就只有49种可能值了。由该关系式得知每一项只与前两项发生关系,所以当连续的两项在前面出现过循环节出现了,注意循环节并不一定会是开始的 1,1 。 又因为一组测试数据中f[n]只有49中可能的答案,最坏的情况是所有的情况都遇到了,那么那也会在50次运算中产生循环节。找到循环节后,就可以轻松解决了。
#include<iostream> #include<stdio.h> using namespace std; int f[100000005]; int main() { int a,b,n,i,j; f[1]=1;f[2]=1; while(scanf("%d%d%d",&a,&b,&n)) { int s=0;//记录周期 if(a==0&&b==0&&n==0) break; for(i=3;i<=n;i++) { f[i]=(a*f[i-1]+b*f[i-2])%7; for(j=2;j<i;j++) if(f[i-1]==f[j-1]&&f[i]==f[j])//此题可以这样做的原因就是 2个确定后就可以决定后面的 { s=i-j; //cout<<j<<" "<<s<<" >>"<<i<<endl; break; } if(s>0) break; } if(s>0){ f[n]=f[(n-j)%s+j]; //cout<<"f["<<n<<"]:="<<"f["<<(n-j)%s+j<<"] "<<endl; } cout<<f[n]<<endl; } return 0; }
import java.util.Scanner; public class Main { public static void main(String[] args) { Scanner sc = new Scanner(System.in); while(sc.hasNext()){ int[] a = new int[54]; int A = sc.nextInt(); int B = sc.nextInt(); int n = sc.nextInt(); if(A==0&&B==0&n==0){ return ; } a[1]=1; a[2]=1; int k=0; int i; for(i=3;i<54;i++){ a[i] = (A*a[i-1]+B*a[i-2])%7; if(i>5&&a[i]==a[4]&&a[i-1]==a[3]){ k=i-4; break; } } //System.out.println(k); if(n>2){ System.out.println(a[(n-3)%k+3]); }else{ System.out.println("1"); } } } }