降低使用门槛,Quick BI成为大东鞋业8000家门店的数据导航

本文涉及的产品
智能商业分析 Quick BI,专业版 50license 1个月
简介: 通过引入MaxCompute和Quick BI,大东解决了以往数据查询即刻导致数据库闪崩的状况,还搭建起完善的报表体系,稳定应对高频、高并发的数据分析。

大东鞋业一季大约有500款的新品。大区下辖的各个分公司要对这500款新品进行订货数量的提报,而这个数字来自于以往的经验和高层下达的KPI。分公司确定了每款的订货数量,接下来就要考虑如何首铺,什么样的鞋放在什么样的门店也靠经验支撑。经过一段时间的销售才能后置的根据经营状况对畅销款进行补单,补单量依旧是靠人为经验或者既定规则。

 

在创业初期根据人的经验做一些较为激进的决策,让大东在市场快速扩容,屡创佳绩。但当业务趋近饱和,越来越多的竞争对手涌现,经验上的“激进”和“不稳定”就会变成一种赌博,一旦没有赌准,便会面临巨大的损失。

 

只有数据能帮助决策实现持续且极致的精细化

 

大东创建了全资子公司屹创,负责大东主品牌和子品牌的数字营销技术与运营。

 

“数据化也有不同的发展阶段,就像开车一样,一开始认路靠的是老司机对一定区域熟悉的记忆,然后有了可以按图索骥的地图,之后是数字化的导航,最后就是实现自动驾驶了。我们现在利用AI+BI走在了数字化导航的阶段。“ 屹创新零售总经理汤叶青说到。

image.png

 

Quick BI助力数字营销与运营

2019年,大数据引擎在大东集团拉通,这是一个01的过程。

通过引入MaxComputeQuick BI,将报表取数从业务系统中彻底剥离,不但解决了以往数据查询即刻导致数据库闪崩的状况,还搭建起完善的报表体系,稳定应对高频、高并发的数据分析。

44.png

Quick BI能力大图


 

营销管理数据门户搭建 112家分公司全覆盖

 

具有专业能力的数字营销技术与运营团队与分公司业务人员充分调研之后,为商品首铺、补货、调价等等场景设计多套完善的指标体系,Quick BI后台连接多种数据源,完成复杂的数据建模与计算,产出数据报表,并搭建完整的数据门户

数字营销技术与运营团队完成统一建设后,然后通过Quick BI的空间管理、行级权限管理,安全的将数据下放至112家分公司,再由分公司商品部门随业务需求的变化自主选择重要的数据指标,通过拖拉拽的方式,零SQL的产出数据报表,并个性化的完善营销管理数据门户。

image.png

营销管理数据门户测试数据样板

 

在这套机制运行的过程中,数字营销技术与运营团队的数据分析师会接到分公司提出的新指标开发需求,发现有的需求视角独特,非常值得大家借鉴。为了鼓励更多的人参与数字化运营的思考,集团举行了指标体系应用的评选

 

在同一个大区的同一时间段,各个分公司都在做同一件事。比如夏季首铺,大家需要通过数据的支持,将商品铺至各个门店。而在这时候,他们最关心的数据指标是什么,会制作出怎样的报表,在首铺环节产生了怎样的价值?

这就是一个适合业务横向评比和经验交流的时机,也是数字营销技术与运营团队沉淀分析模版的好机会。


 

智能算法调价 优化库存结构 提高出货效率

 

Quick BI能为大东提供良好的数据可视化及仪表板的支持。除了报表和自助分析服务外,Quick BI还提供了部分人工智能能力。

image.png

鞋品的价格在其全生命周期中会历经次数不等的调节,而调价的原因和调至的价格会受到很多因素的影响。

调价前通常会设置一个目标,包含销量与均价,再将一些变化的场景因子考虑进去,比如温度、天气、上架时长、节假日等等。再与现有的店铺和商品纬度的业务数据结合,通过算法模块进行定价的计算,最后输出调价模型,以及调价后的业务评估指标和模型评估指标,用于对调价后销售表现的复盘。

 

设定的目标和需要被考虑的动态场景因子,是每次调价都不尽相同的变量。这一过程通过Quick BI的数据填报功能输入,该模块提供增、删、改、查以及审批、导出功能。输入的数据被直接存储于RDS数据库。

与存储的业务数据一同在大东的自建智能算法模型中计算出调价模型,完成价格审批流程,将模型导入SAP生成调价建议。灵活的数据填报和修改可以强化从数据调整到智能再到分析的闭环。

image.png

 

算法产出的业务评估指标和模型评估指标由Quick BI搭建可视化报表,呈现调价后的销售目标完成状态和细节数据变化的洞察。以杭州地区2021年春季调价为例,系统产出的调价建议采纳率为75.7%,调价后销量达成率95.6%。汤总提到的自动驾驶,也出现端倪。

image.png

 

 

高频日报、周报生产提效

 

分布在112家分公司的商品部是高度数据化的部门,在这里每天都要产出日报,指导铺货、补货、调货的决策,每周还要产出周报向上汇报。

以往,需要向总部IT提交数据开发的需求,从开发取数,再到制作报表,少则需要2小时。现在,Quick BI中“分析师”角色开放给商品团队经理进行自助分析,通过选择适合的可视化图表或电子表格,利用控件进行条件约束,仅需拖拽指标即可在30分钟内完成日报。适合公开的数据结果还可以通过钉钉群进行广泛推送,触达更多的人群。

image.png

钉钉群推送报表

 

支持丰富数据源直连

 

开放是Quick BI一直坚持的方向,这在支持的数据源类型上也能洞见一二。早期,由于成本因素,大东会选择多种数据库存储不同的业务数据,早在BI工具选型调研时发现很多BI产品不能支持现有数据库。而Quick BI覆盖的数据源多达38种,并且迭代速度很快,几乎每次发版都会新增数据源类型。随着业务的发展,大东开始了更多的尝试,目前利用数据湖DLA订阅友盟SDK埋点数据,友盟采集到的数据,会回流至数据湖DLAQuick BI可以直连数据湖,读取友盟端实时RT数据明细表,在线根据营销场景分析需求,创建数据集进行在线多维分析。


大东鞋业在顺应时代发展的道路上,一直走在积极探索数智化转型的前列。围绕用户价值,大东鞋业充分利用数据和技术思维快速洞察目标客户的潜在需求,进行商业模式再造,重塑价值链,真正实现“7天快时尚”。

相关实践学习
阿里云实时数仓实战 - 用户行为数仓搭建
课程简介 1)学习搭建一个数据仓库的过程,理解数据在整个数仓架构的从采集、存储、计算、输出、展示的整个业务流程。 2)整个数仓体系完全搭建在阿里云架构上,理解并学会运用各个服务组件,了解各个组件之间如何配合联动。 3 )前置知识要求:熟练掌握 SQL 语法熟悉 Linux 命令,对 Hadoop 大数据体系有一定的了解   课程大纲 第一章 了解数据仓库概念 初步了解数据仓库是干什么的 第二章 按照企业开发的标准去搭建一个数据仓库 数据仓库的需求是什么 架构 怎么选型怎么购买服务器 第三章 数据生成模块 用户形成数据的一个准备 按照企业的标准,准备了十一张用户行为表 方便使用 第四章 采集模块的搭建 购买阿里云服务器 安装 JDK 安装 Flume 第五章 用户行为数据仓库 严格按照企业的标准开发 第六章 搭建业务数仓理论基础和对表的分类同步 第七章 业务数仓的搭建  业务行为数仓效果图  
目录
相关文章
|
15天前
|
存储 人工智能 分布式计算
数据不用搬,AI直接炼!阿里云AnalyticDB AI数据湖仓一站式融合AI+BI
阿里云瑶池旗下的云原生数据仓库AnalyticDB MySQL版(以下简称ADB)诞生于高性能实时数仓时代,实现了PB级结构化数据的高效处理和分析。在前几年,为拥抱大数据的浪潮,ADB从传统数仓拓展到数据湖仓,支持Paimon/Iceberg/Delta Lake/Hudi湖格式,为开放的数据湖提供数据库级别的性能、可靠性和管理能力,从而更好地服务以SQL为核心的大规模数据处理和BI分析,奠定了坚实的湖仓一体基础。
|
5月前
|
运维 监控 数据可视化
产品测评 | 大模型时代下全场景数据消费平台的智能BI—Quick BI深度解析
Quick BI是阿里云旗下的全场景数据消费平台,助力企业实现数据驱动决策。用户可通过连接多种数据源(如本地文件、数据库等)进行数据分析,并借助智能小Q助手以对话形式查询数据或搭建报表。平台支持数据可视化、模板快速构建视图等功能,但目前存在不支持JSON格式文件、部分功能灵活性不足等问题。整体而言,Quick BI在数据分析与展示上表现出强大能力,适合业务类数据处理,未来可在智能化及运维场景支持上进一步优化。
|
6月前
|
人工智能 自然语言处理 数据可视化
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
随着大模型技术突破,全球企业迎来数据智能革命。Gartner预测,到2027年,中国80%的企业将采用多模型生成式AI策略。然而,数据孤岛与高门槛仍阻碍价值释放。
213 8
大模型+BI:一场关乎企业未来生死的数据智能卡位战 | 【瓴羊数据荟】数据MeetUp第四期
|
6月前
|
SQL 人工智能 自然语言处理
颠覆传统BI认知:Quick BI如何用“傻瓜式”操作重塑数据决策?
Quick BI是阿里云推出的一款零代码+AI数据分析工具,专为业务人员设计。通过简洁的界面和强大的功能,它让数据“开口说话”。从Excel秒变智能资产,到拖拽式构建高定看板,再到自然语言查询与预测分析,菜鸟也能轻松上手。企业微信集成、移动端优化等功能,助力实时决策。Quick BI打破技术壁垒,推动数据民主化,让每个岗位都能用业务语言对话数据,实现真正的数据驱动转型。
|
6月前
|
数据可视化 数据挖掘 BI
基于烟草零售商订单数据的Quick BI体验报告
Quick BI旨在通过智能的数据分析和可视化能力帮助企业构建高效的分析系统。在我初步了解该产品后,发现它不仅支持创建美观的仪表板、复杂的电子表格以及动态大屏,还能够无缝集成到现有的业务流程中,极大地提升了工作效率。尤其对于需要频繁展示数据分析结果给管理层或客户的场景来说,Quick BI提供了一个便捷且专业的解决方案。
|
6月前
|
数据可视化 数据挖掘 BI
Quick BI评测报告:从IT开发视角评测“全场景数据消费式BI平台”
Quick BI评测报告:从IT开发视角评测“全场景数据消费式BI平台”
204 0
|
7月前
|
人工智能 BI 自然语言处理
【瓴羊数据荟】 共话AI×Data的企业应用进化,瓴羊「数据荟」MeetUp城市行上海场顺利收官!
瓴羊「数据荟」Meet Up城市行系列活动第四期活动将于3月7日在上海举办,由中国信息通信研究院与阿里巴巴瓴羊专家联袂呈现,共同探讨AI时代的数据应用实践与企业智能DNA的革命性重构。
265 0
【瓴羊数据荟】  共话AI×Data的企业应用进化,瓴羊「数据荟」MeetUp城市行上海场顺利收官!
|
数据可视化 安全 搜索推荐
干货|FESCO Adecco外企德科:Quick BI打造战略管理“观数台”(2)
干货|FESCO Adecco外企德科:Quick BI打造战略管理“观数台”
349 4
|
监控 数据可视化 数据挖掘
干货|FESCO Adecco外企德科:Quick BI打造战略管理“观数台”(1)
干货|FESCO Adecco外企德科:Quick BI打造战略管理“观数台”
333 4
|
9月前
|
供应链 监控 安全
基于Quick BI的多部门组织下的数据共享及管理方案
本文介绍了企业在使用Quick BI时面临的数据共享与安全控制需求,涵盖技术、财务、销售等部门的具体挑战,并提出了基于角色组授权、工作空间隔离、行级权限管理等解决方案,确保数据既能高效共享又能安全可控。
411 5
基于Quick BI的多部门组织下的数据共享及管理方案

热门文章

最新文章

相关产品

  • 智能商业分析 Quick BI