​LeetCode刷题实战288:单词的唯一缩写

简介: 算法的重要性,我就不多说了吧,想去大厂,就必须要经过基础知识和业务逻辑面试+算法面试。所以,为了提高大家的算法能力,这个公众号后续每天带大家做一道算法题,题目就从LeetCode上面选 !

今天和大家聊的问题叫做 单词的唯一缩写,我们先来看题面:https://leetcode-cn.com/problems/unique-word-abbreviation/

3.jpg

假设你有一个字典和一个单词,请你判断该单词的缩写在这本字典中是否唯一。若单词的缩写在字典中没有任何 其他 单词与其缩写相同,则被称为单词的唯一缩写。

示例

给定 dictionary = [ "deer", "door", "cake", "card" ]
isUnique("dear") -> false
isUnique("cart") -> true
isUnique("cane") -> false
isUnique("make") -> true

解题


一个单词的缩写可以表示成第一个字母+中间字母个数+最后一个字母。给一个单词字典和一个单词,判断这个单词的缩写是唯一的,即字典的单词缩写中没有这个缩写或者有这个缩写但和这个单词是一样的(注意这种情况的处理)。

解法:定义一个函数用来操作缩写单词,对于字典中的所有单词进行缩写并存入另一个哈希表(key为缩写后的单词,value为set)。再对单词进行缩写,然后判断单词的缩写是否在哈希表中出现,如果没出现那肯定是唯一的。如果出现了还要看set里存的是不是只是这个单词,如果有其它单词出现就不是唯一的。

public class ValidWordAbbr {
    Map<String, Set<String>> map;
    public ValidWordAbbr(String[] dictionary) {
        map = new HashMap<>();
        for (String s : dictionary) {
            String abbr = getAbbr(s);
            if (!map.containsKey(abbr)) {
                map.put(abbr, new HashSet<String>());
            }
            map.get(abbr).add(s);
        }
    }
    public boolean isUnique(String word) {
        String abbr = getAbbr(word);
        if (!map.containsKey(abbr) || (map.get(abbr).contains(word) && map.get(abbr).size() == 1)) {
            return true;
        }
        return false;
    }
    private String getAbbr(String s) {
        if (s.length() < 3) {
            return s;
        }
        int len = s.length();
        return s.substring(0, 1) + (len - 2) + s.substring(len - 1);
    }
}

好了,今天的文章就到这里,如果觉得有所收获,请顺手点个在看或者转发吧,你们的支持是我最大的动力 。

相关文章
|
1月前
|
存储 人工智能 算法
从零掌握贪心算法Java版:LeetCode 10题实战解析(上)
在算法世界里,有一种思想如同生活中的"见好就收"——每次做出当前看来最优的选择,寄希望于通过局部最优达成全局最优。这种思想就是贪心算法,它以其简洁高效的特点,成为解决最优问题的利器。今天我们就来系统学习贪心算法的核心思想,并通过10道LeetCode经典题目实战演练,带你掌握这种"步步为营"的解题思维。
|
5月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
242 1
|
5月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
243 1
|
5月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
183 0
|
数据采集 负载均衡 安全
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
本文提供了多个多线程编程问题的解决方案,包括设计有限阻塞队列、多线程网页爬虫、红绿灯路口等,每个问题都给出了至少一种实现方法,涵盖了互斥锁、条件变量、信号量等线程同步机制的使用。
261 3
LeetCode刷题 多线程编程九则 | 1188. 设计有限阻塞队列 1242. 多线程网页爬虫 1279. 红绿灯路口
|
机器学习/深度学习 人工智能 自然语言处理
280页PDF,全方位评估OpenAI o1,Leetcode刷题准确率竟这么高
【10月更文挑战第24天】近年来,OpenAI的o1模型在大型语言模型(LLMs)中脱颖而出,展现出卓越的推理能力和知识整合能力。基于Transformer架构,o1模型采用了链式思维和强化学习等先进技术,显著提升了其在编程竞赛、医学影像报告生成、数学问题解决、自然语言推理和芯片设计等领域的表现。本文将全面评估o1模型的性能及其对AI研究和应用的潜在影响。
333 1
Leetcode(最后一个单词长度)
这篇文章介绍了两种解决LeetCode第58题的方法,即计算给定字符串中最后一个单词的长度,方法包括翻转字符串和逆向遍历统计。
94 0
【LeetCode 20】151.反转字符串里的单词
【LeetCode 20】151.反转字符串里的单词
117 0
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
251 6
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
|
Python
【Leetcode刷题Python】剑指 Offer 32 - III. 从上到下打印二叉树 III
本文介绍了两种Python实现方法,用于按照之字形顺序打印二叉树的层次遍历结果,实现了在奇数层正序、偶数层反序打印节点的功能。
166 6

热门文章

最新文章