CPU与GPU的区别

简介: 计算机理论

CPU和GPU主要由以下5个方面的区别:

一、概念

1、CPU(Central Processing Unit-中央处理器),是一块超大规模的集成电路,是一台计算机的运算核心(Core)和控制核心( Control Unit)。它的功能主要是解释计算机指令以及处理计算机软件中的数据。


19.png

19.png

2、GPU(Graphics Processing Unit-图形处理器),是一种专门在个人电脑、工作站、游戏机和一些移动设备(如平板电脑、智能手机等)上图像运算工作的微处理器。

20.png二、缓存

1、CPU有大量的缓存结构,目前主流的CPU芯片上都有四级缓存,这些缓存结构消耗了大量的晶体管,在运行的时候需要大量的电力。


2、GPU的缓存就很简单,目前主流的GPU芯片最多有两层缓存,而且GPU可以利用晶体管上的空间和能耗做成ALU单元,因此GPU比CPU的效率要高一些。



三、响应方式

1、CPU要求的是实时响应,对单任务的速度要求很高,所以就要用很多层缓存的办法来保证单任务的速度。


2、GPU是把所有的任务都排好,然后再批处理,对缓存的要求相对很低。



四、浮点运算方式

1、CPU除了负责浮点整形运算外,还有很多其他的指令集的负载,比如像多媒体解码,硬件解码等,因此CPU是多才多艺的。CPU注重的是单线程的性能,要保证指令流不中断,需要消耗更多的晶体管和能耗用在控制部分,于是CPU分配在浮点计算的功耗就会变少。


2、GPU基本上只做浮点运算的,设计结构简单,也就可以做的更快。GPU注重的是吞吐量,单指令能驱动更多的计算,相比较GPU消耗在控制部分的能耗就比较少,因此可以把电省下来的资源给浮点计算使用。



五、应用方向

1、CPU所擅长的像操作系统这一类应用,需要快速响应实时信息,需要针对延迟优化,所以晶体管数量和能耗都需要用在分支预测、乱序执行、低延迟缓存等控制部分。


2、GPU适合对于具有极高的可预测性和大量相似的运算以及高延迟、高吞吐的架构运算。


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1月前
|
弹性计算 人工智能 Serverless
阿里云ACK One:注册集群云上节点池(CPU/GPU)自动弹性伸缩,助力企业业务高效扩展
在当今数字化时代,企业业务的快速增长对IT基础设施提出了更高要求。然而,传统IDC数据中心却在业务存在扩容慢、缩容难等问题。为此,阿里云推出ACK One注册集群架构,通过云上节点池(CPU/GPU)自动弹性伸缩等特性,为企业带来全新突破。
|
2月前
|
监控 异构计算
Jetson 学习笔记(八):htop查看CPU占用情况和jtop监控CPU和GPU
在NVIDIA Jetson平台上使用htop和jtop工具来监控CPU、GPU和内存的使用情况,并提供了安装和使用这些工具的具体命令。
176 0
|
1月前
|
芯片
浮动CPU和定点CPU的主要区别是什么
浮动CPU和定点CPU的主要区别在于处理数据的方式不同。浮动CPU支持浮点运算,能高效处理小数和高精度计算;而定点CPU仅支持整数运算,适用于对精度要求不高的场景。
|
2月前
|
机器学习/深度学习 人工智能 并行计算
CPU和GPU的区别
【10月更文挑战第14天】
|
2月前
|
机器学习/深度学习 人工智能 缓存
GPU加速和CPU有什么不同
【10月更文挑战第20天】GPU加速和CPU有什么不同
65 1
|
2月前
|
机器学习/深度学习 弹性计算 编解码
阿里云服务器计算架构X86/ARM/GPU/FPGA/ASIC/裸金属/超级计算集群有啥区别?
阿里云服务器ECS提供了多种计算架构,包括X86、ARM、GPU/FPGA/ASIC、弹性裸金属服务器及超级计算集群。X86架构常见且通用,适合大多数应用场景;ARM架构具备低功耗优势,适用于长期运行环境;GPU/FPGA/ASIC则针对深度学习、科学计算、视频处理等高性能需求;弹性裸金属服务器与超级计算集群则分别提供物理机级别的性能和高速RDMA互联,满足高性能计算和大规模训练需求。
|
19天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
54 7
|
1月前
|
弹性计算 Kubernetes Perl
k8s 设置pod 的cpu 和内存
在 Kubernetes (k8s) 中,设置 Pod 的 CPU 和内存资源限制和请求是非常重要的,因为这有助于确保集群资源的合理分配和有效利用。你可以通过定义 Pod 的 `resources` 字段来设置这些限制。 以下是一个示例 YAML 文件,展示了如何为一个 Pod 设置 CPU 和内存资源请求(requests)和限制(limits): ```yaml apiVersion: v1 kind: Pod metadata: name: example-pod spec: containers: - name: example-container image:
199 1
|
1月前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
588 2
|
3月前
|
存储 关系型数据库 MySQL
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
查询服务器CPU、内存、磁盘、网络IO、队列、数据库占用空间等等信息
200 5