常用数据结构与算法实现
以下博客根据B站罗召勇老师视频:数据结构与算法基础-Java版(罗召勇)写的详细笔记
数据结构与算法基础:
数据结构与算法之基础概述
数据结构:
(一)数据结构与算法之数组
(二)数组结构与算法之栈
(三)数据结构与算法之队列
(四)数据结构与算法之链表
(五)数据结构与算法之树结构基础
(六)数据结构与算法之二叉树大全
(七)数据结构与算法之Huffman tree(赫夫曼树 / 霍夫曼树 / 哈夫曼树 / 最优二叉树)
(八)数据结构与算法之多路查找树(2-3树、2-3-4树、B树、B+树)
(九)数据结构与算法之图结构
十大经典算法:
(一)数据结构与算法之冒泡排序(含改进版)
(二)数据结构与算法之选择排序(含改进版)
(三)数据结构与算法之插入排序(含改进版)
(四)数据结构与算法之希尔排序
(五)数据结构与算法之归并排序
(六)数据结构与算法之快速排序
(七)数据结构与算法之堆排序
(八)数据结构与算法之计数排序
(九)数据结构与算法之桶排序
(十)数据结构与算法之基数排序
选择排序概念
选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理如下。首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。以此类推,直到所有元素均排序完毕。
选择排序的主要优点与数据移动有关。如果某个元素位于正确的最终位置上,则它不会被移动。选择排序每次交换一对元素,它们当中至少有一个将被移到其最终位置上,因此对n个元素的表进行排序总共进行至多n-1次交换。在所有的完全依靠交换去移动元素的排序方法中,选择排序属于非常好的一种
动图展示:
代码实现
import java.util.Arrays; public class seletsort { public static void main(String[] args) { int[] arr = {4, 5, 6, 3, 2, 1}; selectSort(arr); // [1, 5, 6, 3, 2, 4] // [1, 2, 6, 3, 5, 4] // [1, 2, 3, 6, 5, 4] // [1, 2, 3, 4, 5, 6] // [1, 2, 3, 4, 5, 6] // [1, 2, 3, 4, 5, 6] } //选择排序 public static void selectSort(int[] arr) { //遍历所有的数 for (int i = 0; i < arr.length; i++) { int minIndex = i; //把当前遍历的数和后面所有的数依次进行比较,并记录最小的数的下标 for (int j = i + 1; j < arr.length; j++) { //如果后面比较的数比记录的最小的数小 if (arr[minIndex] > arr[j]) { //记录最小的那个数的下标 minIndex = j; } } //如果发现了更小的元素,与第一个元素交换位置(第一个不是最小的元素) if (i != minIndex) { int temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; } //打印每次排序后的结果 System.out.println(Arrays.toString(arr)); } } }
时间复杂度
最优时间复杂度:O(n^2)
最坏时间复杂度:O(n^2)
稳定性:不稳定(考虑升序每次选择最大的情况)
选择排序与冒泡排序一样,需要进行N*(N-1)/2次比较,但是只需要N次交换,当N很大时,交换次数的时间影响力更大,所以选择排序的时间复杂度为O(N^2)。
虽然选择排序与冒泡排序在时间复杂度属于同一量级,但是毫无疑问选择排序的效率更高,因为它的交换操作次数更少,而且在交换操作比比较操作的时间级大得多时,选择排序的速度是相当快的。
代码改进
传统的选择排序每次只确定最小值,根据改进冒泡算法的经验,我们可以对排序算法进行如下改进:每趟排序确定两个最值——最大值与最小值,这样就可以将排序趟数缩减一半
改进后代码如下:
import java.util.Arrays; public class seletsort { public static void main(String[] args) { int[] arr = {4, 5, 6, 3, 2, 1}; selectSort(arr); // [1, 5, 4, 3, 2, 6] // [1, 2, 4, 3, 5, 6] // [1, 2, 3, 4, 5, 6] } //选择排序改进 public static void selectSort(int[] arr) { int minIndex; // 存储最小元素的小标 int maxIndex; // 存储最大元素的小标 for (int i = 0; i < arr.length / 2; i++) { minIndex = i; maxIndex = i; //每完成一轮排序,就确定了两个最值,下一轮排序时比较范围减少两个元素 for (int j = i + 1; j <= arr.length - 1 - i; j++) { //如果待排数组中的某个元素比当前元素小,minIndex指向该元素的下标 if (arr[j] < arr[minIndex]) { minIndex = j; continue; } //如果待排数组中的某个元素比当前元素大,maxIndex指向该元素的下标 else if (arr[j] > arr[maxIndex]) { maxIndex = j; } } //如果发现了更小的元素,与第一个元素交换位置(第一个不是最小的元素) if (i != minIndex) { int temp = arr[i]; arr[i] = arr[minIndex]; arr[minIndex] = temp; // 原来的第一个元素已经与下标为minIndex的元素交换了位置 // 所以现在arr[minIndex]存放的才是之前第一个元素中的数据 // 如果之前maxIndex指向的是第一个元素,那么需要将maxIndex重新指向arr[minIndex] if (maxIndex == i) { maxIndex = minIndex; } } // 如果发现了更大的元素,与最后一个元素交换位置 if (arr.length - 1 - i != maxIndex) { int temp = arr[arr.length - 1 - i]; arr[arr.length - 1 - i] = arr[maxIndex]; arr[maxIndex] = temp; } System.out.println(Arrays.toString(arr)); } } }