官方给出的是CPU:
"""Exports a YOLOv5 *.pt model to ONNX and TorchScript formats Usage: $ export PYTHONPATH="$PWD" && python models/export.py --weights ./weights/yolov5s.pt --img 640 --batch 1 """ import argparse import torch import torch.nn as nn import models from models.experimental import attempt_load from utils.activations import Hardswish from utils.general import set_logging if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='../runs/exp7/weights/best.pt', help='weights path') # from yolov5/models/ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width parser.add_argument('--batch-size', type=int, default=1, help='batch size') opt = parser.parse_args() opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand print(opt) set_logging() # Input img = torch.zeros((opt.batch_size, 3, *opt.img_size)) # image size(1,3,320,192) iDetection # Load PyTorch model model = attempt_load(opt.weights, map_location=torch.device('cpu')) # load FP32 model # Update model for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish): m.act = Hardswish() # assign activation # if isinstance(m, models.yolo.Detect): # m.forward = m.forward_export # assign forward (optional) model.model[-1].export = True # set Detect() layer export=True y = model(img) # dry run # TorchScript export try: print('\nStarting TorchScript export with torch %s...' % torch.__version__) f = opt.weights.replace('.pt', '.torchscript.pt') # filename ts = torch.jit.trace(model, img) ts.save(f) print('TorchScript export success, saved as %s' % f) except Exception as e: print('TorchScript export failure: %s' % e)
GPU
import argparse import torch import torch.nn as nn import models from models.experimental import attempt_load from utils.activations import Hardswish from utils.general import set_logging if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--weights', type=str, default='../runs/exp7/weights/best.pt', help='weights path') # from yolov5/models/ parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size') # height, width parser.add_argument('--batch-size', type=int, default=1, help='batch size') opt = parser.parse_args() opt.img_size *= 2 if len(opt.img_size) == 1 else 1 # expand print(opt) set_logging() # Input img = torch.zeros((opt.batch_size, 3, *opt.img_size)).to(device='cuda') # image size(1,3,320,192) iDetection # Load PyTorch model model = attempt_load(opt.weights, map_location=torch.device('cuda')) # load FP32 model # Update model for k, m in model.named_modules(): m._non_persistent_buffers_set = set() # pytorch 1.6.0 compatability if isinstance(m, models.common.Conv) and isinstance(m.act, nn.Hardswish): m.act = Hardswish() # assign activation # if isinstance(m, models.yolo.Detect): # m.forward = m.forward_export # assign forward (optional) model.model[-1].export = True # set Detect() layer export=True y = model(img) # dry run # TorchScript export try: print('\nStarting TorchScript export with torch %s...' % torch.__version__) f = opt.weights.replace('.pt', '.torchscript.pt') # filename ts = torch.jit.trace(model, img) ts.save(f) print('TorchScript export success, saved as %s' % f) except Exception as e: print('TorchScript export failure: %s' % e)