LeetCode——数组中的第K个最大元素(堆排序-大顶堆)

简介: LeetCode——数组中的第K个最大元素(堆排序-大顶堆)

这是我参与8月更文挑战的第8天,活动详情查看:8月更文挑战

题目描述

image.png

解题思路

本题如果直接再用API解题肯定是不行的,因为面试不可能考你API如何使用,前几天写过这个题目是通过快速排序写的,这次我们采用堆排序,通过大顶堆的方式来求出第K个最大的元素,其实这类问题都属于经典的TOP K问题,属于面试的常考题。

1. 构建大顶堆

为什么要构建大顶堆,是因为大顶堆的对顶元素是整个数组中最大的元素.我们正式利用这点来求解问题的。

  1. 构建大顶堆的第一步是从最后一个非叶子节点开始,一直遍历到根节点.
  2. 一个节点的左子节点是 2*n + 1.
  3. 一个节点的右子节点是 2*n + 2.
  4. 一个节点的父节点是(n-1) / 2 (向下取整)
  5. 一棵树的最后一个非叶子节点是 Math.flool(nums.length/2)-1.

2. 将大顶堆下沉K-1次,得到的就是第K大的元素

假如,我们要求的是第一大的元素,K-1就是零,也就是说不需要进行下沉,此时的大顶堆的堆顶就是最大的元素。若K-1=2,只需下沉两次,堆顶就是我们的最大的元素。所谓的下沉就是将堆顶与末尾元素进行交换。然后将堆的长度减一之后继续进行堆化。

解题代码

// 通过大顶堆求解问题
var findKthLargest = function(nums, k) {
    // 堆的大小
    let heapSize = nums.length;
    // 调用大顶堆函数
    buildMaxHeap(nums,heapSize);
    // 要想求第K大的元素,就需要将大顶堆下沉K-1次,每下沉一次进行一次重新的堆化;
    for (let i = 0; i < k - 1; i++ ) {
        swap(nums,0,nums.length - 1 - i);
        // 将最后一个元素忽略,不参与堆化
        nums
        heapSize--;
        // 从第0个元素开始继续进行堆化
        maxHeapify(nums,0,heapSize);
    }
    // 此时堆顶就是第K个最大元素
    return nums[0]
    // 构建大顶堆
    function buildMaxHeap(nums,heapSize) {
        for (let i = Math.floor(heapSize / 2) - 1; i >= 0; i--) {
            maxHeapify(nums,i,heapSize)
        }
    }
    function maxHeapify(nums,i,heapSize) {
        // 首先假定第i个是最大的
        let max = i;
        let leftChild = 2 * i + 1;
        let rightChild = 2 * i + 2;
        // 如果下标不越界(即子孩子存在),并且子节点小于第i个元素
        if (leftChild < heapSize && nums[leftChild] > nums[max]) {
            max = leftChild;
        }
        if (rightChild < heapSize && nums[rightChild] > nums[max]) {
            max = rightChild;
        }
        // 判断是否发生了交换
        if (max !== i) {
            swap(nums,i,max);
            // 交换之后,从下面上来的元素的位置后面需要继续进行堆化
            maxHeapify(nums,max,heapSize);
        }
    }
    function swap (nums,i,j) {
        let temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }
};
findKthLargest([8,5,0,3,7,1,2], 3)
复制代码

题目反思

  • 学会使用大顶堆的方式来求解TOP K问题。
  • 本题的思路也是解决堆排序的核心思路。
相关文章
|
2月前
【力扣】-- 移除链表元素
【力扣】-- 移除链表元素
37 1
|
2月前
【LeetCode 27】347.前k个高频元素
【LeetCode 27】347.前k个高频元素
35 0
|
2月前
|
算法
Leetcode 初级算法 --- 数组篇
Leetcode 初级算法 --- 数组篇
43 0
|
4月前
|
算法
LeetCode第53题最大子数组和
LeetCode第53题"最大子数组和"的解题方法,利用动态规划思想,通过一次遍历数组,维护到当前元素为止的最大子数组和,有效避免了复杂度更高的暴力解法。
LeetCode第53题最大子数组和
|
2月前
【LeetCode-每日一题】 删除排序数组中的重复项
【LeetCode-每日一题】 删除排序数组中的重复项
23 4
|
2月前
|
索引
Leetcode第三十三题(搜索旋转排序数组)
这篇文章介绍了解决LeetCode第33题“搜索旋转排序数组”的方法,该问题要求在旋转过的升序数组中找到给定目标值的索引,如果存在则返回索引,否则返回-1,文章提供了一个时间复杂度为O(logn)的二分搜索算法实现。
24 0
Leetcode第三十三题(搜索旋转排序数组)
|
2月前
|
算法 C++
Leetcode第53题(最大子数组和)
这篇文章介绍了LeetCode第53题“最大子数组和”的动态规划解法,提供了详细的状态转移方程和C++代码实现,并讨论了其他算法如贪心、分治、改进动态规划和分块累计法。
69 0
|
2月前
|
C++
【LeetCode 12】349.两个数组的交集
【LeetCode 12】349.两个数组的交集
19 0
|
2月前
【LeetCode 06】203.移除链表元素
【LeetCode 06】203.移除链表元素
33 0
|
2月前
【LeetCode-每日一题】移除元素
【LeetCode-每日一题】移除元素
32 0