DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略(三)

简介: DL之BP:神经网络算法简介之BP算法简介(链式法则/计算图解释)、案例应用之详细攻略

3、反向传播(backpropagation)算法

image.png

深度学习模型,采用梯度下降和误差反向传播进行模型参数更新。


随机初始化网络权重

前向传播计算网络输出

计算误差

后向传播误差到前一层; 计算梯度

前面层更新权重和偏置参数

从步骤2重复该过程最小化误差直到损失收敛


4、前向传播计算

image.png

image.png



使用损失函数比较实际输出和期望输出

image.png



计算图(Computation Graph):计算过程可以表示成有向图的形式。

前向计算过程:

计算各计算结点的导数。


5、反向传播误差信号

image.png

后向传播误差到前面的层,传播的误差用来计算损失函数的梯度。

计算损失函数?对各参数的梯度(偏导数)

输出层连接权重的梯度

隐藏层连接权重的梯度

偏置项的梯度


反向传播(backpropagation)

任何导数均可通过将相应连接边上的导数连乘得到。

若求导涉及多条路径,需要将每条路径上的导数连乘起来,然后再求和。



6、更新参数

image.png

得到梯度以后,就可以进行更新参数。


链式法则


链式法则简介


      链式法chain rule,属于微积分领域,是微积分中的求导法则,用于求一个复合函数的导数,是在微积分的求导运算中一种常用的方法。复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。


image.png


      这个结论可推广到任意有限个函数复合到情形,于是复合函数的导数将是构成复合这有限个函数在相应点的 导数的乘积,就像锁链一样一环套一环,故称链式法则。



1、链式法则与复合函数


        链式法则是关于复合函数的导数的性质:如果某个函数由复合函数表示,则该复合函数的导数可以用构成复合函数的各个函数的导数的乘积表示。

        数学式表示

          image.png                                      



2、链式法则和计算图


       其中“**2”节点表示平方运算,沿着与正方向相反的方向,乘上局部导数后传递。反向传播的计算顺序是,先将节点的输入信号乘以节点的局部导数(偏导数),然后再传递给下一个节点。


image.png


反向传播是基于链式法则的。

(1)、根据计算图的反向传播的结果,dz/dx = 2(x + y)


image.png


(2)、乘法的反向传播:左图是正向传播,右图是反向传播。


            image.png

       因为乘法的反向传播会乘以输入信号的翻转值,所以各自可按1.3 × 5 =6.5、1.3 × 10 = 13 计算。另外,加法的反向传播只是将上游的值传给下游,并不需要正向传播的输入信号。但是,乘法的反向传播需要正向传播时的输入信号值。因此,实现乘法节点的反向传播时,要保存正向传播的输入信号。


(3)、购买苹果的反向传播的例子:这个问题相当于求“支付金额关于苹果的价格的导数”“支付金额关于苹果的个数的导数”“支付金额关于消费税的导数”。


image.png




链式法则使用


1、求导案例

image.png

相关文章
|
1月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
2月前
|
机器学习/深度学习 算法 调度
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
14种智能算法优化BP神经网络(14种方法)实现数据预测分类研究(Matlab代码实现)
327 0
|
2月前
|
算法 机器人
基于SOA海鸥优化算法的PID控制器最优控制参数计算matlab仿真
本课题研究基于海鸥优化算法(SOA)优化PID控制器参数的方法,通过MATLAB仿真对比传统PID控制效果。利用SOA算法优化PID的kp、ki、kd参数,以积分绝对误差(IAE)为适应度函数,提升系统响应速度与稳定性。仿真结果表明,SOA优化的PID控制器在阶跃响应和误差控制方面均优于传统方法,具有更快的收敛速度和更强的全局寻优能力,适用于复杂系统的参数整定。
|
1月前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
252 5
|
2月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
395 11
|
2月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
|
2月前
|
机器学习/深度学习 传感器 算法
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
【表面粗糙度】基于粒子群PSO算法优化-BP神经网络的表面粗糙度研究(Matlab代码实现)
215 7
|
2月前
|
机器学习/深度学习 编解码 并行计算
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
【创新未发表!】基于BKA算法优化-BP、HO算法优化-BP、CP算法优化-BP、GOOSE算法优化-BP、NRBO算法优化-BP神经网络回归预测比较研究(Matlab代码)
174 0
|
2月前
|
机器学习/深度学习 数据采集 运维
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
改进的遗传算法优化的BP神经网络用于电厂数据的异常检测和故障诊断
|
2月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
201 2