更灵活的边缘云原生运维:OpenYurt 单元化部署新增 Patch 特性

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
函数计算FC,每月15万CU 3个月
可观测监控 Prometheus 版,每月50GB免费额度
简介: 在正文开始之前,我们先回顾一下单元化部署的概念和设计理念。在边缘计算场景下,计算节点具有很明显的地域分布属性,相同的应用可能需要部署在不同地域下的计算节点上。

头图.png

作者 | 张杰(冰羽)
来源 | 阿里巴巴云原生公众号

背景

在正文开始之前,我们先回顾一下单元化部署的概念和设计理念。在边缘计算场景下,计算节点具有很明显的地域分布属性,相同的应用可能需要部署在不同地域下的计算节点上。以 Deployment 为例,如下图所示,传统的做法是先将相同地域的计算节点设置成相同的标签,然后创建多个 Deployment,不同 Deployment 通过 NodeSelectors 选定不同的标签,从而实现将相同的应用部署到不同地域的需求。

1.png

但是随着地域分布越来越多,使得运维变得越来越复杂,具体表现在以下几个方面:

  • 当镜像版本升级,需要修改大量相关的 Deployment 的镜像版本配置。
  • 需要自定义 Deployment 的命名规范来表明相同的应用。
  • 缺少一个更高的视角对这些 Deployment 进行统一管理和运维。运维的复杂性随着应用和地域分布增多出现线性增长。

基于以上需求和问题,openyurt 的 yurt-app-manager 组件提供的单元化部署(UnitedDeployment)通过更上层次的抽象,对这些子的 Deployment 进行统一管理:自动创建/更新/删除,从而大幅简化了运维复杂度的问题。

yurt-app-manager 组件: 
https://github.com/openyurtio/yurt-app-manager

如下图所示:

2.png

单元化部署(UnitedDeployment)对这些 Workload 进行了更高层次的抽象,UnitedDeployment 包含两个主要配置:WorkloadTemplate 和 Pools。workloadTemplate 格式可以是Deployment 也可以是Statefulset。Pools 是一个列表,每个列表都有一个 Pool 的配置,每个 Pool 都有它的 name、replicas 和 nodeSelector 配置。通过 nodeSelector 可以选择一组机器, 因此在边缘场景下 Pool 我们可以简单的认为它代表了某个地域下的一组机器。使用WorkloadTemplate + Pools 的定义,我们可以很容易的将一个 Deployment 或者 Statefulset 应用分发到不同的地域中去。

下面是一个具体的 UnitedDeployment 例子:

apiVersion: apps.openyurt.io/v1alpha1
kind: UnitedDeployment
metadata:
  name: test
  namespace: default
spec:
  selector:
    matchLabels:
      app: test
  workloadTemplate:
    deploymentTemplate:
      metadata:
        labels:
          app: test
      spec:
        selector:
          matchLabels:
            app: test
        template:
          metadata:
            labels:
              app: test
          spec:
            containers:
            - image: nginx:1.18.0
              imagePullPolicy: Always
              name: nginx
  topology:
    pools:
    - name: beijing
      nodeSelectorTerm:
        matchExpressions:
        - key: apps.openyurt.io/nodepool
          operator: In
          values:
          - beijing
      replicas: 1
    - name: hangzhou
      nodeSelectorTerm:
        matchExpressions:
        - key: apps.openyurt.io/nodepool
          operator: In
          values:
          - hangzhou
      replicas: 2

UnitedDeployment 控制器的具体逻辑如下:

用户定义了一个 UnitedDeployment CR , CR 里定义了一个 DeploymentTemplate 和两个 Pool。

  • 其中 DeploymentTemplate 格式为一个 Deployment 格式定义,本例子中使用的 Image 为 nginx:1.18.0
  • Pool1 的 name 为 beijing, replicas=1,nodeSelector 为 apps.openyurt.io/nodepool=beijing。代表 UnitedDeployment 控制器将要创建一个子的 Deployment,replicas 为 1,nodeSelector 为 apps.openyurt.io/nodepool=beijing,其他的配置继承自 DeploymentTemplate 配置。
  • Pool2 的 name 为 hangzhou,replicas=2, nodeSelector 为 apps.openyurt.io/nodepool=hangzhou,代表 UnitedDeployment 控制器将要创建一个子的 Deployment,replicas 为 2,nodeSelector 为 apps.openyurt.io/nodepool=hangzhou,其他的配置继承自 DeploymentTemplate 配置。

UnitedDeployment 控制器检测到 name 为 test 的 UnitedDeployment CR 实例被创建后,会首先根据 DeploymentTemplate 里的配置生成一个 Deployment 的模板对象,根据 Pool1 和 Pool2 的配置和 Deployment 的模板对象,分别生成 name 前缀为 test-hangzhou- 和 test-beijing- 的两个 deployment 资源对象,这两个 Deployment 资源对象有自己的 nodeselector 和 replica 配置。这样通过使用 workloadTemplate+Pools 的形式,可以将 workload 分发到不同的地域,而无需用户维护大量的 Deployment 资源。

UnitedDeployment 所解决的问题

UnitedDeployment 通过一个单元化部署实例就可以自动维护多个 Deployment 或者 Statefulset 资源,每个 Deployment 或者 Statefulset 资源都遵循统一的命名规范。同时还能实现 Name、NodeSelectors 和 Replicas 等的差异化配置。能极大地简化用户在边缘场景下的运维复杂度。

新的需求

UnitedDeployment 能满足用户的大部分需求,但是在我们进行推广和客户落地以及在与社区同学讨论的过程中,逐渐发现在一些特殊场景下,UnitedDeployment 提供的功能还显得有点不足,例如如下场景:

  • 应用镜像升级时候,用户计划先在在某个节点池中做验证,如果验证成功,再在所有节点池中全量更新发布。
  • 为了加快镜像拉取速度,用户可能在不同节点池中搭建自己的私有镜像仓库,因此同一个应用在每个节点池下的镜像名会不一样。
  • 不同的节点池下服务器数量,规格,以及业务访问压力不一致,因此同一个应用在不同节点池下 pod 的 cpu,内存等配置会不一样。
  • 同一个应用在不同节点池下可能会使用不同的 configmap 资源。

这些需求促使了 UnitedDeployment 需要提供针对每个 Pool 做一些个性化配置的功能,允许用户根据不同节点池下的实际情况做一些个性化的配置,比如镜像、pod 的 request 和 limit 等等。为了最大化的提供灵活性,经过讨论我们决定在 Pool 里增加 Patch 的字段,允许用户自定义 Patch 内容,但是需要遵循Kubernetes 的 strategic merge patch规范,其行为与我们常用的 kubectl patch 有点类似。

pool 里新增 patch,示例如下:

    pools:
    - name: beijing
      nodeSelectorTerm:
        matchExpressions:
        - key: apps.openyurt.io/nodepool
          operator: In
          values:
          - beijing
      replicas: 1          
      patch:
        spec:
          template:
            spec:
              containers:
              - image: nginx:1.19.3
                name: nginx

patch 里定义的内容,需要遵循Kubernetes 的 strategic merge patch 规范, 如果用过 kubectl patch 的同学就很容易的知道 patch 内容如何书写,具体可以参照使用 kubectl patch 更新 Kubernetest api 对象。
接下来我们演示一下 UnitedDeployment patch 的使用。

特性演示

1. 环境准备

  • 提供一个 K8s 集群或者 OpenYurt 集群,集群里至少 2 台节点。一台节点 label 为:apps.openyurt.io/nodepool=beiing, 另一台节点 label 为:apps.openyurt.io/nodepool=hangzhou。
  • 集群里需要安装 yurt-app-manager 组件。

yurt-app-manager 组件: 
https://github.com/openyurtio/yurt-app-manager

2. 创建 UnitedDeployment 实例

cat <<EOF | kubectl apply -f -

apiVersion: apps.openyurt.io/v1alpha1
kind: UnitedDeployment
metadata:
  name: test
  namespace: default
spec:
  selector:
    matchLabels:
      app: test
  workloadTemplate:
    deploymentTemplate:
      metadata:
        labels:
          app: test
      spec:
        selector:
          matchLabels:
            app: test
        template:
          metadata:
            labels:
              app: test
          spec:
            containers:
            - image: nginx:1.18.0
              imagePullPolicy: Always
              name: nginx
  topology:
    pools:
    - name: beijing
      nodeSelectorTerm:
        matchExpressions:
        - key: apps.openyurt.io/nodepool
          operator: In
          values:
          - beijing
      replicas: 1
    - name: hangzhou
      nodeSelectorTerm:
        matchExpressions:
        - key: apps.openyurt.io/nodepool
          operator: In
          values:
          - hangzhou
      replicas: 2              
EOF

实例中 workloadTemplate 使用了 Deployment 模板, 其中 name 为 nginx 的镜像为 nginx:1.18.0。同时拓扑里定义了两个 pool:beijing 和 hangzhou,replicas 数目分别为 1 和 2。

3. 查看 UnitedDeployment 创建的 Deployment

# kubectl get deployments
NAME                  READY   UP-TO-DATE   AVAILABLE   AGE
test-beijing-rk8g8    1/1     1            1           6m4s
test-hangzhou-kfhvj   2/2     2            2           6m4s

可以看到 yurt-app-manager 控制器创建了两个 Deployment,分布对应 beijing 和 hangzhou 的 pool,Deployment 的命名规范以 {UnitedDeployment name}-{pool name} 为前缀。查看这两个 Deployment 配置我们可以发现,Replicas 和 Nodeselector 继承了对应的每个 Pool 的配置,而其他的配置则继承了 workloadTemplate 模板的配置。

4. 查看对应创建的 Pod

# kubectl get pod
NAME                                   READY   STATUS    RESTARTS   AGE
test-beijing-rk8g8-5df688fbc5-ssffj    1/1     Running   0          3m36s
test-hangzhou-kfhvj-86d7c64899-2fqdj   1/1     Running   0          3m36s
test-hangzhou-kfhvj-86d7c64899-8vxqk   1/1     Running   0          3m36s

可以看到创建了 1 个 name 前缀为 test-beijing 的 pod,2 个 name 前缀为 test-hangzhou 的 pod。

5. 使用 patch 能力做差异化配置

使用 kubectl edit ud test  命令为 beijing 的 pool 增加 patch 字段,patch 里的内容是修改 name 为 nginx 的 container 镜像版本为:nginx:1.19.3。

格式如下:

    - name: beijing
      nodeSelectorTerm:
        matchExpressions:
        - key: apps.openyurt.io/nodepool
          operator: In
          values:
          - beijing
      replicas: 1
      patch:
        spec:
          template:
            spec:
              containers:
              - image: nginx:1.19.3
                name: nginx

6. 查看 Deploy 实例配置

重新查看前缀为 test-beijing 的 Deployment,可以看到 container 的镜像配置已经变成了 1.19.3。

 kubectl get deployments  test-beijing-rk8g8 -o yaml

总结

通过 UnitedDeployment 的 workloadTemplate + Pools 的形式,可以将 workload 通过继承的模板的方式快速分发到不同的地域。在加上 Pool 的 patch 能力,在继承模板的配置的同时还能提供更灵活的差异化配置,基本上已经可以满足大部分客户在边缘场景下特殊的需求。

如果您对于 OpenYurt 有任何疑问,欢迎使用钉钉搜索群号(31993519)加入钉钉交流群。

相关文章
|
4月前
|
存储 运维 安全
Docker化运维:容器部署的实践指南
Docker化运维:容器部署的实践指南
|
2月前
|
运维 Dubbo Cloud Native
Dubbo 云原生重构出击:更快部署、更强控制台、更智能运维
Apache Dubbo 最新升级支持云原生,提供一键部署微服务集群与全新可视化控制台,提升全生命周期管理体验,助力企业高效构建云原生应用。
262 25
|
13天前
|
人工智能 JSON 运维
告别假期规划的“人肉运维”!这个AI提示词,帮你“一键部署”十一完美旅行
十一黄金周将至,开发者们如何用“工程师思维”高效规划假期?本文推出一款AI旅行规划神器——结构化提示词,无需代码,只需填空,即可生成专业级定制攻略。从痛点分析到即用模板,涵盖行程、预算、避坑指南,助你一键生成完美假期方案,把时间留给诗和远方。
261 124
|
7月前
|
运维 数据可视化 关系型数据库
使用 Websoft9 运维面板部署和维护 WordPress 到底有多简单?
如何实现 WordPress 极速部署?Websoft9 通过应用商店一键安装与可视化运维管理,10 分钟完成零门槛上线。
175 1
|
3月前
|
运维 监控 Cloud Native
从“守机器”到“写策略”——云原生架构把运维逼成了架构师
从“守机器”到“写策略”——云原生架构把运维逼成了架构师
62 1
|
2月前
|
运维 Kubernetes Cloud Native
云原生运维也能很稳:Kubernetes 运维避坑指南
云原生运维也能很稳:Kubernetes 运维避坑指南
89 0
|
6月前
|
人工智能 运维 监控
阿里云携手神州灵云打造云内网络性能监测标杆 斩获中国信通院高质量数字化转型十大案例——金保信“云内网络可观测”方案树立云原生运维新范式
2025年,金保信社保卡有限公司联合阿里云与神州灵云申报的《云内网络性能可观测解决方案》入选高质量数字化转型典型案例。该方案基于阿里云飞天企业版,融合云原生引流技术和流量“染色”专利,解决云内运维难题,实现主动预警和精准观测,将故障排查时间从数小时缩短至15分钟,助力企业降本增效,形成可跨行业复制的数字化转型方法论。
273 6
|
7月前
|
运维 安全 关系型数据库
Websoft9 运维面板,全网真正的一键部署应用
Websoft9运维面板实现应用真·一键部署,通过智能环境适配、安全架构与容器化技术,将传统数小时部署缩短至分钟级,显著提升效率与安全性。
205 5
|
8月前
|
Cloud Native 安全 Serverless
云原生应用实战:基于阿里云Serverless的API服务开发与部署
随着云计算的发展,Serverless架构日益流行。阿里云函数计算(Function Compute)作为Serverless服务,让开发者无需管理服务器即可运行代码,按需付费,简化开发运维流程。本文从零开始,介绍如何使用阿里云函数计算开发简单的API服务,并探讨其核心优势与最佳实践。通过Python示例,演示创建、部署及优化API的过程,涵盖环境准备、代码实现、性能优化和安全管理等内容,帮助读者快速上手Serverless开发。
|
7月前
|
运维 Kubernetes Cloud Native
云栖实录 | 智能运维:云原生大规模集群GitOps实践
云栖实录 | 智能运维:云原生大规模集群GitOps实践
247 1