非容器应用与K8s工作负载的服务网格化实践-4 基于ASM的POD和VM互访实践-GRPC协议篇

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 为了实现高可用,非容器应用通常有一套服务注册和发现的机制。相对而言,kubernetes容器服务为POD提供了统一的基于dns的注册和发现机制。对于http协议的非容器应用的迁移,因为都是基于dns机制,切换成本交底。而对于使用非http协议的非容器应用,服务注册和发现这个技术点为迁移带来了额外的困难。如何从非容器的注册和发现大脑最终迁移到kubernetes的注册和发现大脑,目前尚没有广泛认可的方案。目前常见的讨论是双脑方案,就是让非容器应用在启动时同时向两套大脑注册,并从两套中发现依赖服务,然后逐步实现向kubernetes大脑过度。这套方案的优点是可以通过随时摆动来保证可用性。

为了实现高可用,非容器应用通常有一套服务注册和发现的机制。相对而言,kubernetes容器服务为POD提供了统一的基于dns的注册和发现机制。对于http协议的非容器应用的迁移,因为都是基于dns机制,切换成本交底。而对于使用非http协议的非容器应用,服务注册和发现这个技术点为迁移带来了额外的困难。

如何从非容器的注册和发现大脑最终迁移到kubernetes的注册和发现大脑,目前尚没有广泛认可的方案。目前常见的讨论是双脑方案,就是让非容器应用在启动时同时向两套大脑注册,并从两套中发现依赖服务,然后逐步实现向kubernetes大脑过度。这套方案的优点是可以通过随时摆动来保证可用性。

我个人比较倾向于彻底的kubernetes一脑模式。相比多脑,一脑的复杂度会极大下降。遗留大脑集群保持现状,kubernetes大脑集群使用新的方案。这样可以将服务发现和网格化解耦为两个独立的问题。借助服务网格的蓝绿部署/流量转移,可以将验证完毕依赖关系的集群逐步放行并最终替换遗留大脑集群。这个方案最有挑战的地方是如何在不改变非容器应用代码的前提下,将其底层协议替换。如果可以替换为grpc,那么就可以按照本篇的实践实现网格化。目前这个想法还很不成熟,期待交流。

1 POD和VM互访

路由规则

服务网格的流量转移是一脑方案的核心。首先需要明确的是,网格化的服务链路都会经过sidecar,sidecar内部(envoy)实现了对grpc的负载均衡,grpc协议的上游服务通过长链接和下游服务各个节点保持连接,在不配置流量转移的情况下,上游请求会均匀地路由到下游各个节点。

与http协议通过path配置流量转移类似,grpc的配置是通过service/method或者service.method来定义匹配规则的。grpc的路由配置示意如下。

spec:
  hosts:
    - hello2-svc
  http:
    - name: grpc-hello-route
      match:
        - uri:
            prefix: /org.feuyeux.grpc.Greeter/SayHello
      route:
        - destination:
            host: hello2-svc
            subset: v1
          weight: 30
        - destination:
            host: hello2-svc
            subset: v2
          weight: 60
        - destination:
            host: hello2-svc
            subset: v3
          weight: 10

搭建实验环境

本篇示例实验与前一篇相仿,不再冗述重复部分。我们希望路由到hello2 en/fr/es的流量比例为:30%:60%:10%。

示例(grpc_reciprocal_demo)包含如下元素:

  • hello1 deployment(镜像grpc_springboot_v1)
  • hello3 deployment(镜像grpc_springboot_v1)
  • hello2 docker containers(镜像grpc_springboot_v1/grpc_springboot_v2/grpc_springboot_v3)
  • 入口网关:istio-ingressgateway
  • 入口流量配置:gateway/virtualservice
  • hello1流量配置:hello1 service
  • hello2流量配置:hello2 service/hello2 virtualservice/hello2 destinationrule
  • hello3流量配置:hello3 service
  • hello2 serviceentry/hello2 workloadentry

与前一篇http所用示例类似,grpc示例使用的镜像为grpc_springboot-{version},是一个基于springboot开发的grpc服务(源代码在这里)。每个实例可以通过环境变量GRPC_HELLO_BACKEND定义下游服务。

启动hello2应用

通过如下命令分别在3个ecs节点上启动hello2的 docker container

#ssh1.sh
docker run \
--rm \
--network host \
--name http_v1 \
-e GRPC_HELLO_BACKEND=hello3-svc.grpc-reciprocal-hello.svc.cluster.local \
registry.cn-beijing.aliyuncs.com/asm_repo/grpc_springboot_v1:1.0.0
#ssh2.sh
docker run \
--rm \
--network host \
--name http_v2 \
-e GRPC_HELLO_BACKEND=hello3-svc.grpc-reciprocal-hello.svc.cluster.local \
registry.cn-beijing.aliyuncs.com/asm_repo/grpc_springboot_v2:1.0.0
#ssh3.sh
docker run \
--rm \
--network host \
--name http_v3 \
-e GRPC_HELLO_BACKEND=hello3-svc.grpc-reciprocal-hello.svc.cluster.local \
registry.cn-beijing.aliyuncs.com/asm_repo/grpc_springboot_v3:1.0.0

其他部分的搭建与前篇类似,可以参考前篇和本篇示例脚本,余文不在冗述。

grpcurl

相对于http的验证工具curl,我们使用grpcurl对grpc服务进行验证。

当grpc服务提供反射protocolbuf能力时,可以使用如下命令进行请求验证:

k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello \
  -- grpcurl -plaintext -d '{"name":"eric"}' \
  hello3-svc.grpc-reciprocal-hello.svc.cluster.local:7001 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply'
  
Hello eric(172.18.1.10)

如果上述命令返回错误,说明grpc服务无法反射protocolbuf,需要在执行grpccurl时,通过-import-path-proto参数提供proto文件。示意如下。

k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello -- \
grpcurl -plaintext -d '{"name":"eric"}' \
-import-path /opt -proto hello.proto \
hello3-svc.grpc-reciprocal-hello.svc.cluster.local:7001 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply'

Hello eric(172.18.1.10)

KUBE验证-POD和VM互访

初步掌握grpccurl命令后,我们验证基于grpc协议的POD和VM互访。请求从hello1 POD发向hello2 service,然后路由到各VM中的hello2 app,再由hello2 app请求到hello3 POD。

for i in {1..6}; do
  k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello \
    -- grpcurl -plaintext -d '{"name":"eric"}' localhost:7001 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply'
done
Hello eric(172.18.1.11)<-Hola eric(192.168.0.172)<-Hello eric(172.18.1.10)
Hello eric(172.18.1.11)<-Bonjour eric(192.168.0.171)<-Hello eric(172.18.1.10)
Hello eric(172.18.1.11)<-Hello eric(192.168.0.170)<-Hello eric(172.18.1.10)
...

MESH验证-全链路流量转移

最后部署gateway/virtualservice/destinationrule进行端到端验证。

IP=$(k -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')

for i in {1..100}; do
  resp=$(grpcurl -plaintext -d '{"name":"eric"}' "$IP":7004 org.feuyeux.grpc.Greeter/SayHello | jq -r '.reply')
  echo "$resp" >>test_traffic_shift_result
done

echo "expected 30%(Hello eric)-60%(Bonjour eric)-10%(Hola eric):"
sort test_traffic_shift_result | grep -v "^[[:space:]]*$"| uniq -c | sort -nrk1
  57 Hello eric(172.18.1.11)<-Bonjour eric(192.168.0.171)<-Hello eric(172.18.1.10)
  32 Hello eric(172.18.1.11)<-Hello eric(192.168.0.170)<-Hello eric(172.18.1.10)
  11 Hello eric(172.18.1.11)<-Hola eric(192.168.0.172)<-Hello eric(172.18.1.10)

2 grpc基准测试

ghz

ghz是grpc协议的基准测试工具,功能与http协议下的apache benchfortio类似。我们可以通过ghz对服务网格内的grpc服务进行测试和调参。ghz的基本用法示意如下。

hello1_pod=$(k get pod -l app=hello1-deploy -n grpc-reciprocal-hello -o jsonpath={.items..metadata.name})

k exec "$hello1_pod" -c hello-v1-deploy -n grpc-reciprocal-hello -- \
  ghz --insecure -d '{"name":"eric"}' \
  --proto /opt/hello.proto \
  --call org.feuyeux.grpc.Greeter/SayHello \
  -n 2000 \
  -c 20 \
  -q 500 \
  localhost:7001
  • -n参数用来指定请求数量
  • -c参数用来指定并发数量
  • -q参数用来指定QPS

测试结果示意如下。

Summary:
  Count:        2000
  Total:        5.60 s
  Slowest:      851.86 ms
  Fastest:      4.88 ms
  Average:      54.51 ms
  Requests/sec: 357.21

Response time histogram:
  4.883 [1]     |
  89.580 [1919] |∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
  174.278 [43]  |∎
  258.976 [3]   |
  343.673 [5]   |
  428.371 [2]   |
  513.068 [4]   |
  597.766 [3]   |
  682.464 [0]   |
  767.161 [7]   |
  851.859 [13]  |

Latency distribution:
  10 % in 24.37 ms 
  25 % in 31.71 ms 
  50 % in 41.98 ms 
  75 % in 53.87 ms 
  90 % in 70.67 ms 
  95 % in 83.83 ms 
  99 % in 683.16 ms 

Status code distribution:
  [OK]   2000 responses   

上述结果表示RT/latency基本(1919/2000)落在90ms以内,平均54.51 ms,95%的请求延迟在83.83 ms以内,99 %段的延迟在683.16 ms,存在长尾,需要进一步优化服务网格的配置以及服务源代码。

trafficPolicy

通过修改hello2的DestinationRule可以随时调整连接池配置。我们可以结合基准测试,不断调整配置找到最佳性能点。示意如下。

apiVersion: networking.istio.io/v1alpha3
kind: DestinationRule
metadata:
  name: hello2-dr
  namespace: grpc-reciprocal-hello
spec:
  host: hello2-svc
  subsets:
    - labels:
        version: v1
      name: v1
    - labels:
        version: v2
      name: v2
    - labels:
        version: v3
      name: v3
  trafficPolicy:
    connectionPool:
      http:
        http1MaxPendingRequests: 20
        http2MaxRequests: 100
        maxRequestsPerConnection: 10
        maxRetries: 1
      tcp:
        connectTimeout: 10s
        maxConnections: 10

到此,POD和VM互访的grpc协议流量管理讲述完毕。

本篇示例完整演示了非容器应用网格化过程中的一个比较经典的场景。覆盖到从istio-ingressgateway到deployment、workloadentry等各种CRD的配置,较完整地展示了POD和VM互访中遇到的各技术点的配置。

接下来,我们在此基础上,验证下POD和VM作为同一service的混合流量,如何实现流量转移。

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。 &nbsp; &nbsp; 相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
目录
相关文章
|
3月前
使用 ASM 对集群外部服务进行熔断
熔断是一种流量管理策略,用于系统故障或超载时保护系统。ASM 支持集群内外服务的熔断配置,通过 sidecar 自动完成,无需修改应用。本文介绍如何部署应用并配置熔断规则,验证熔断效果。
107 0
|
9月前
|
运维 Kubernetes 网络协议
基于虚拟服务配置的渐进式迁移实践:Istio集群至ASM集群的平滑切换
本文介绍了从Istio+k8s环境迁移到阿里云ASM+ACK环境的渐进式方法,通过配置虚拟服务和入口服务实现新老集群间的服务调用与流量转发,确保业务连续性与平滑迁移
861 132
|
7月前
|
存储 负载均衡 测试技术
ACK Gateway with Inference Extension:优化多机分布式大模型推理服务实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with Inference Extension组件,在Kubernetes环境中为多机分布式部署的LLM推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
8月前
|
存储 人工智能 Kubernetes
ACK Gateway with AI Extension:面向Kubernetes大模型推理的智能路由实践
本文介绍了如何利用阿里云容器服务ACK推出的ACK Gateway with AI Extension组件,在Kubernetes环境中为大语言模型(LLM)推理服务提供智能路由和负载均衡能力。文章以部署和优化QwQ-32B模型为例,详细展示了从环境准备到性能测试的完整实践过程。
|
8月前
|
存储 人工智能 物联网
ACK Gateway with AI Extension:大模型推理的模型灰度实践
本文介绍了如何使用 ACK Gateway with AI Extension 组件在云原生环境中实现大语言模型(LLM)推理服务的灰度发布和流量分发。该组件专为 LLM 推理场景设计,支持四层/七层流量路由,并提供基于模型服务器负载感知的智能负载均衡能力。通过自定义资源(CRD),如 InferencePool 和 InferenceModel,可以灵活配置推理服务的流量策略,包括模型灰度发布和流量镜像。
|
9月前
|
Kubernetes 监控 Serverless
基于阿里云Serverless Kubernetes(ASK)的无服务器架构设计与实践
无服务器架构(Serverless Architecture)在云原生技术中备受关注,开发者只需专注于业务逻辑,无需管理服务器。阿里云Serverless Kubernetes(ASK)是基于Kubernetes的托管服务,提供极致弹性和按需付费能力。本文深入探讨如何使用ASK设计和实现无服务器架构,涵盖事件驱动、自动扩展、无状态设计、监控与日志及成本优化等方面,并通过图片处理服务案例展示具体实践,帮助构建高效可靠的无服务器应用。
|
9月前
|
监控 Kubernetes Cloud Native
基于阿里云容器服务Kubernetes版(ACK)的微服务架构设计与实践
本文介绍了如何基于阿里云容器服务Kubernetes版(ACK)设计和实现微服务架构。首先概述了微服务架构的优势与挑战,如模块化、可扩展性及技术多样性。接着详细描述了ACK的核心功能,包括集群管理、应用管理、网络与安全、监控与日志等。在设计基于ACK的微服务架构时,需考虑服务拆分、通信、发现与负载均衡、配置管理、监控与日志以及CI/CD等方面。通过一个电商应用案例,展示了用户服务、商品服务、订单服务和支付服务的具体部署步骤。最后总结了ACK为微服务架构提供的强大支持,帮助应对各种挑战,构建高效可靠的云原生应用。
|
11月前
|
人工智能 运维 监控
阿里云ACK容器服务生产级可观测体系建设实践
本文整理自2024云栖大会冯诗淳(花名:行疾)的演讲,介绍了阿里云容器服务团队在生产级可观测体系建设方面的实践。冯诗淳详细阐述了容器化架构带来的挑战及解决方案,强调了可观测性对于构建稳健运维体系的重要性。文中提到,阿里云作为亚洲唯一蝉联全球领导者的容器管理平台,其可观测能力在多项关键评测中表现优异,支持AI、容器网络、存储等多个场景的高级容器可观测能力。此外,还介绍了阿里云容器服务在多云管理、成本优化等方面的最新进展,以及即将推出的ACK AI助手2.0,旨在通过智能引擎和专家诊断经验,简化异常数据查找,缩短故障响应时间。
阿里云ACK容器服务生产级可观测体系建设实践
|
9月前
|
监控 Cloud Native Java
基于阿里云容器服务(ACK)的微服务架构设计与实践
本文介绍如何利用阿里云容器服务Kubernetes版(ACK)构建高可用、可扩展的微服务架构。通过电商平台案例,展示基于Java(Spring Boot)、Docker、Nacos等技术的开发、容器化、部署流程,涵盖服务注册、API网关、监控日志及性能优化实践,帮助企业实现云原生转型。
|
11月前
|
运维 Kubernetes 调度
阿里云容器服务 ACK One 分布式云容器企业落地实践
阿里云容器服务ACK提供强大的产品能力,支持弹性、调度、可观测、成本治理和安全合规。针对拥有IDC或三方资源的企业,ACK One分布式云容器平台能够有效解决资源管理、多云多集群管理及边缘计算等挑战,实现云上云下统一管理,提升业务效率与稳定性。

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多
    下一篇
    oss云网关配置