吴恩达《深度学习》第一门课(3)浅层神经网络

简介: 3.1神经网络概述(1)神经网络每个单元相当于一个逻辑回归,神经网络由逻辑回归的堆叠起来。下图是网络结构:针对网络结构进行计算:1.第一层的正向传播2.第一层的反向传播3.第二层的反向传播(正向只要把微分符号去掉即可)3.

3.1神经网络概述

(1)神经网络每个单元相当于一个逻辑回归,神经网络由逻辑回归的堆叠起来。下图是网络结构:

针对网络结构进行计算:

1.第一层的正向传播

2.第一层的反向传播

3.第二层的反向传播(正向只要把微分符号去掉即可)

3.2神经网络的表示

(1)神经网络各层分别较输入层、掩藏层和输出层,其中说一个网络有几层时一般不包括输入层,如下图是一个两层的网络:

(2)a[0]chang也常用来表示输入特征,a[1]b表示第一层的输出,如第一层(不算输入层)有四个神经元,其输出为(用a表示是因为activation激活函数的缩写):

(3)关于W[m],b[m]是和第m层输出有关的系数,W的维度(第m层单元数,上一层单元数),b的维度为(第m层单元数,1)。

3.3计算一个神经元网络的输出

(1)神经结构如下:

 

(2)每一个神经元做的计算:

(2)向量化表示下面四个式子:

(3)一个输入样本,神经网络的计算

3.4多样本向量化

(1)多样本的计算示意图(a[2](1)前面的2表示第二层,后面的1表示第一个样本):

(2)向量化:

(3)以矩阵A为例,从水平上看,每一列对应着不同的训练样本;从垂直方向看,每一行对应着同一层的不同神经元。

3.5向量化实现的解释

(1)矩阵乘列向量得到列向量:

(2)上面式子中省略了b[1],b[1]的维度与Z[1]相同,再加上python具有广播的功能,所以可以使得向量b与每一列相加。

3.6激活函数

(1)sigmoid激活函数:除了输出层是一个二分类问题基本不会用它。存在梯度消失问题,其函数表达式如下:

(2)tanh激活函数:tanh是非常优秀的,可以中心化数据(-1到1),几乎适合所以场合。存在梯度消失问题,其函数表达式如下:

(3)ReLU激活函数:最常用的默认函数,如果不确定用哪个激活函数,就是用ReLU(函数表达式为a=max(0,z))或则Leaky ReLU(函数表达式为a=max(0.01z,z),0.01参数可改)。ReLU在负半区梯度为零,产生所谓的稀疏性,但由于有足够多的掩藏层是z大于0,所以学习过程还是非常的快。

(4)下面的四种激活函数的图像:

3.7为什么需要非线性激活函数

(1)如果没有非线性激活函数,那么无论网络有多少层,输出始终是输入的线性组合,与一层网络毫无区别。举例如下:

(2)有时候输出可能会用到线性激活函数。

3.8激活函数的导数

 

3.9神经网络的梯度下降

(1)正向传播四个式子:

(2)反向传播六个式子(下面公式3.3.2中应该是dz[2]):

3.10(选修)直观理解反向传播

(1)主要推导过程:

3.11随机初始化

(1)W不能初始化为零否则一层中每个单元都做相同的计算,和一个单元没什么区别,b可以初始化为零。可按照如下方式初始化(0.01的作用是时输出不会太大,太大由由sigmoid、tanh激活函数是将会导致梯度特别小):

相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
139 55
|
20天前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
109 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
7天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
53 31
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
19天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
20天前
|
机器学习/深度学习 人工智能 算法
深度学习入门:用Python构建你的第一个神经网络
在人工智能的海洋中,深度学习是那艘能够带你远航的船。本文将作为你的航标,引导你搭建第一个神经网络模型,让你领略深度学习的魅力。通过简单直观的语言和实例,我们将一起探索隐藏在数据背后的模式,体验从零开始创造智能系统的快感。准备好了吗?让我们启航吧!
46 3
|
26天前
|
机器学习/深度学习 自然语言处理 算法
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
36 1
|
26天前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
|
17天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
72 5