未来大数据的处理和发展的五个趋势

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:

本文讲的是未来大数据的处理和发展的五个趋势,近几年,大数据已经从大公司独有的流行词和概念变成了驱动我们数字生活发展的动力。下面是未来大数据的处理和发展的五个趋势。

  1.数据科学越来越大众化

  随着像Coursera、Udacity和Edx等这些和数据分析相关的网络教育平台的流行,越来越多的人不用花一分钱便可以学到所有的知识,从基础的统计学知识到自然语言处理和机器学习。除了这个,Oxdata化简和集成了R语言后推出的分析产品,Quid正在做的具有机器学习和人工智能概念的工具也设计了傻瓜式的使用界面和形象具体的用户展示方法。更有像Kaggle这样的公司推出了关于预测模型的众包平台。所以大数据的处理的趋势之一便是像Datahero,Infogram和Statwing他们一样,把数据分析变得易用,大众。

  2.Hadoop对MapReduce的依赖越来越小

  Hadoop平台只为MapReduce服务的时代从Hadoop的2.0版本开始正式结束了。新版本支持的产品和服务将会和Cloudera的Impala一样用一个SQL 查询引擎,或者其他的方法来替代MapReduce。HBase NoSQL数据库就是Hadoop离开MapReduce约束后的一个很好的例子。 大型的网络公司,像Facebook、eBay等都已经用HBase去处理事务型的应用了。

  

  3.大数据越来越多的被用到了我们身边的应用中

  首先是大数据应用对我们的开发者的要求变低了,有时候开发大数据应用就像在你的应用的代码中加入几行,或者像是写一段儿脚本一样。其次,大数据的应用范围也得到了拓展,用户习惯分析,网络安全,人工智能,售后服务等等都可以通过将大数据处理做成产品或者应用而实现。现在的大数据技术已经被带入了许多网络和手机的应用中,从购物推荐到找到和自己有关联的人等等。

  4.机器学习无处不在

  很容易就可以看到机器学习越来越流行,从我们身边的小应用Prismatic、Summly、Trifacta、CloudFlare、Twitter、Google、Facebook、Bidgely、Healthrageous、Predilytics、BloomReach、DataPop、Gravity……如今很难想象一个没有机器学习技术的科技公司可以生存。Heck,甚至是微软都在机器学习上下了很大赌注它将成为一个重要的收入来源。

  

  5.手机将成为人工智能的数据来源

  我们的手机和手机中的应用目前可能是最大的私人信息来源。通过机器学习,语音识别和其他一些技术,这些应用可以知道我们去哪儿,我们的朋友都是谁,我们的日历上都有哪些提醒,我们上网都浏览什么。通过新一代的私人助理应用(Siri,Saga和Google Now等)我们的手机更能够理解我们的言论,知道我们经常出入的地方,我们平时吃什么,我们在家、工作和郊游的时间等等。


作者: 康文博

来源: IT168

原文标题:未来大数据的处理和发展的五个趋势

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
2月前
|
数据采集 人工智能 Java
阿里云正式开源 LoongSuite:打造 AI 时代的高性能低成本可观测采集套件
AI Agent技术架构的演进正在重塑软件工程实践方式。开发者可通过智能编程助手提升效率,也可依托专业框架构建智能体系统。技术生态呈现多维度发展,涵盖高代码与低代码方案,并支持Java和Python等多语言。新型开发范式如AutoGen和LangChain降低了开发门槛。LoongSuite作为可观测采集套件,助力企业高效构建AI时代可观测体系,推动标准化数据规范,提升系统稳定性与运维效率。
|
分布式计算 Hadoop Shell
熟悉常用的HBase操作
熟悉常用的HBase操作
307 3
熟悉常用的HBase操作
|
JavaScript Java 测试技术
基于SpringBoot+Vue的农机配件仓库管理系统的详细设计和实现(源码+lw+部署文档+讲解等)
基于SpringBoot+Vue的农机配件仓库管理系统的详细设计和实现(源码+lw+部署文档+讲解等)
88 0
|
SQL 分布式计算 API
轻松驾驭Hive数仓,数据分析从未如此简单!
轻松驾驭Hive数仓,数据分析从未如此简单!
356 1
|
XML 存储 安全
探索 doc 和 docx 文件格式的区别
探索 doc 和 docx 文件格式的区别
527 3
|
安全 Go 开发者
Golang深入浅出之-Go语言中的CSP模型:深入理解并发哲学
【5月更文挑战第2天】Go语言的并发编程基于CSP模型,强调通过通信共享内存。核心概念是goroutines(轻量级线程)和channels(用于goroutines间安全数据传输)。常见问题包括数据竞争、死锁和goroutine管理。避免策略包括使用同步原语、复用channel和控制并发。示例展示了如何使用channel和`sync.WaitGroup`避免死锁。理解并发原则和正确应用CSP模型是编写高效安全并发程序的关键。
309 7
|
SQL 数据采集 分布式计算
Hive 数仓及数仓设计方案
数仓整合企业数据,提供统一出口,用于数据治理。其特点包括面向主题集成和主要支持查询操作。数仓设计涉及需求分析(如咨询老板、运营人员和行业专家)、确定主题指标(如电商的转化率)、数据标准设定、规模与成本计算、技术选型(如Hadoop生态组件)以及数据采集和操作。设计流程涵盖从理解需求到实施SQL函数和存储过程的全过程。
372 3
|
编解码
FFT_频谱分析(数字信号处理)
用FFT对信号作频谱分析是学习数字信号处理的重要内容。经常需要进行谱分析的信号是模拟信号和时域离散信号。对信号进行谱分析的重点在于频谱分辨率及分析误差。频谱分辨率D和频谱分析的点数N直接相关,其分辨率为2π/N 。因此2π/N≤D,可以据这个公式确定频率的分辨率。 FFT分析频谱的误差在于得到的是离散谱,而信号(非周期信号)是连续谱,只有当N较大时,离散谱的包络才能逼近于连续谱。因此N要适当选择大一些。 周期信号的频谱是离散谱,只有用整数倍周期的长度作FFT,得到的离散谱才能代表周期信号的频谱。如果不知道信号周期,可以尽量选择信号的观察时间长一些。 对模拟信号进行谱分析时,首先要按照
918 1
FFT_频谱分析(数字信号处理)
|
缓存 前端开发 Java
SpringBoot启动后加载初始化数据
SpringBoot启动后加载初始化数据
461 0
|
Java Spring
SpringBoot核心特性——异步任务和定时任务那些事
前言 通常情况下,SpringMVC接收到请求后会将请求具体分发给单个线程进行处理。如果请求处理中涉及到比较耗时的操作,为了能更快地将响应返回给用户,那么就需要将耗时的业务操作交由别的线程进行异步处理,而SpringBoot已经为我们提供了这样的实现。
728 2
SpringBoot核心特性——异步任务和定时任务那些事