Python 中的列表推导式和生成器

简介: Python 中的列表推导式和生成器

在 Python 中,列表推导式和生成器是用于处理迭代数据的两种方法。它们有着相似的语法,但在底层实现和用途上有着显著的区别。

列表推导式(List Comprehensions)


列表推导式是一种快速创建列表的方式,其语法形式为:

new_list = [expression for item in iterable if condition]


其中:

expression 是对 item 的操作或表达式。

item 是在可迭代对象(如列表、元组、字符串等)中的每个元素。

iterable 是可迭代对象,用于提供 item。

condition 是一个可选的条件,用于筛选生成列表时的元素。


示例 1: 生成平方数列表


假设我们想生成一个包含 1 到 10 的数字的平方的列表:

squared = [x ** 2 for x in range(1, 11)]
print(squared)
输出:[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]


示例 2: 筛选偶数

even_numbers = [x for x in range(1, 11) if x % 2 == 0]
print(even_numbers)
# 输出:[2, 4, 6, 8, 10]


示例 3: 字符串处理

words = ["hello", "world", "python", "is", "awesome"]
capitalized = [word.upper() for word in words]
print(capitalized)
# 输出:['HELLO', 'WORLD', 'PYTHON', 'IS', 'AWESOME']


生成器(Generators)


生成器是一种用于惰性计算数据的方式,它们允许按需逐个生成值,而不是一次性生成所有值。生成器使用 yield 语句来产生数据。


创建生成器的语法:

def generator_function():
    for item in iterable:
        yield expression


示例 1: 生成斐波那契数列的生成器

def fibonacci_generator(n):
    a, b = 0, 1
    count = 0
    while count < n:
        yield a
        a, b = b, a + b
        count += 1
        
fib = fibonacci_generator(10)
print(list(fib))

输出:[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]


示例 2: 无限序列的生成器

def infinite_sequence():
    num = 0
    while True:
        yield num
        num += 1
        
inf_seq = infinite_sequence()
for i in range(5):
    print(next(inf_seq))
# 输出:0, 1, 2, 3, 4


示例 3: 大数据集的处理

data = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20]
# 对数据集中的每个数进行平方运算,但不立即生成新的列表,而是按需生成
squared_gen = (x ** 2 for x in data)
print(next(squared_gen))  # 输出:4
print(next(squared_gen))  # 输出:16


列表推导式 vs. 生成器


内存消耗:列表推导式会立即生成所有元素并存储在内存中,而生成器则按需生成值,节省内存空间。

惰性计算:生成器实现了惰性计算,逐个产生值,适用于处理大型数据集或无限序列。


应用场景


列表推导式:适用于需要立即获得完整列表的场景。

生成器:适用于需要按需生成值、处理大量数据或无限序列的场景。


总结


列表推导式和生成器是 Python 中用于处理迭代数据的重要工具。列表推导式适用于立即生成完整列表的场景,而生成器则按需生成值,节省内存空间,适用于处理大量数据或无限序列的场景。


目录
相关文章
|
1月前
|
存储 JavaScript Java
(Python基础)新时代语言!一起学习Python吧!(四):dict字典和set类型;切片类型、列表生成式;map和reduce迭代器;filter过滤函数、sorted排序函数;lambda函数
dict字典 Python内置了字典:dict的支持,dict全称dictionary,在其他语言中也称为map,使用键-值(key-value)存储,具有极快的查找速度。 我们可以通过声明JS对象一样的方式声明dict
163 1
|
1月前
|
开发者 Python
Python列表推导式:优雅与效率的完美结合
Python列表推导式:优雅与效率的完美结合
371 116
|
1月前
|
Python
Python列表推导式:简洁与高效的艺术
Python列表推导式:简洁与高效的艺术
373 119
|
1月前
|
Python
Python列表推导式:优雅与效率的艺术
Python列表推导式:优雅与效率的艺术
245 99
|
1月前
|
数据处理 Python
解锁Python列表推导式:优雅与效率的完美融合
解锁Python列表推导式:优雅与效率的完美融合
262 99
|
1月前
|
Python
Python列表推导式:简洁与高效的艺术
Python列表推导式:简洁与高效的艺术
|
1月前
|
索引 Python
Python 列表切片赋值教程:掌握 “移花接木” 式列表修改技巧
本文通过生动的“嫁接”比喻,讲解Python列表切片赋值操作。切片可修改原列表内容,实现头部、尾部或中间元素替换,支持不等长赋值,灵活实现列表结构更新。
120 1
|
1月前
|
大数据 开发者 Python
Python列表推导式:简洁与高效的艺术
Python列表推导式:简洁与高效的艺术
|
1月前
|
索引 Python
098-python列表_切片_slice_开始_结束
本文介绍了Python中列表的切片(slice)操作,通过“前闭后开”原则截取列表片段,支持正负索引、省略端点等用法,并结合生活实例(如切面包、直播切片)帮助理解。切片不改变原列表,返回新列表。
213 4
|
8月前
|
存储 人工智能 索引
Python数据结构:列表、元组、字典、集合
Python 中的列表、元组、字典和集合是常用数据结构。列表(List)是有序可变集合,支持增删改查操作;元组(Tuple)与列表类似但不可变,适合存储固定数据;字典(Dictionary)以键值对形式存储,无序可变,便于快速查找和修改;集合(Set)为无序不重复集合,支持高效集合运算如并集、交集等。根据需求选择合适的数据结构,可提升代码效率与可读性。

推荐镜像

更多