LG开源韩语大模型Exaone 3.0,8万亿token训练数据

简介: 【9月更文挑战第10天】韩国电子巨头LG旗下的AI研究机构近日宣布,已成功开发并开源了专为韩语设计的大模型Exaone 3.0,成为人工智能领域的又一里程碑。该模型基于8万亿token的数据训练而成,在多个基准测试中表现出色,尤其在理解和生成韩语方面。作为LG首款开源大型语言模型,Exaone 3.0将促进开放研究与技术创新,推动AI发展。尽管存在计算资源和多语言适应性等挑战,其发布仍为AI领域带来新机遇。论文详情见[这里](https://arxiv.org/abs/2408.03541)。

近日,韩国电子巨头LG旗下的AI研究机构宣布,他们已经成功开发并开源了一款名为Exaone 3.0的韩语大模型。这一消息在人工智能领域引起了广泛关注。Exaone 3.0的发布,标志着在大型语言模型(LLMs)领域,又一个重要的里程碑被树立。

据了解,Exaone 3.0是在8万亿token的训练数据上进行训练的,这为模型的强大性能提供了坚实的基础。作为一款专门为韩语设计的大模型,Exaone 3.0在多个公共和内部基准测试中表现出了出色的性能,尤其是在理解和生成韩语方面。

值得一提的是,Exaone 3.0是LG AI Research开发的首款开源大型语言模型。这一举措无疑将促进开放研究和创新,为更多的研究人员和开发者提供一个强大的工具,以推动人工智能技术的发展。

在性能方面,Exaone 3.0的表现令人印象深刻。它不仅在通用任务和复杂推理上取得了令人信服的结果,还在韩语任务上表现出了卓越的能力。这得益于模型在训练过程中使用的大量韩语数据,以及研究人员在模型设计和优化方面的努力。

然而,尽管Exaone 3.0在许多方面都表现出色,但也有一些潜在的问题值得关注。首先,由于模型的规模庞大,它可能需要大量的计算资源和能源来运行,这可能会对环境产生一定的影响。其次,尽管Exaone 3.0在韩语任务上表现出色,但在其他语言上的表现可能还不尽如人意,这可能限制了它的应用范围。

尽管如此,Exaone 3.0的发布仍然是一个重要的进展,它为人工智能领域带来了新的机遇和挑战。通过开源这一模型,LG AI Research为全球的研究人员和开发者提供了一个强大的工具,以推动人工智能技术的发展。同时,它也提醒我们,在追求技术进步的同时,我们也需要关注其对环境和社会的影响,以确保人工智能的发展是可持续和负责任的。

论文地址:https://arxiv.org/abs/2408.03541

目录
相关文章
|
4月前
|
人工智能 自然语言处理
公理训练让LLM学会因果推理:6700万参数模型比肩万亿参数级GPT-4
【8月更文挑战第3天】新论文提出“公理训练”法,使仅有6700万参数的语言模型掌握因果推理,性能媲美万亿级GPT-4。研究通过大量合成数据示例教授模型因果公理,实现有效推理并泛化至复杂图结构。尽管面临合成数据需求大及复杂关系处理限制,此法仍为语言模型的因果理解开辟新途径。[链接: https://arxiv.org/pdf/2407.07612]
85 1
|
2月前
|
机器学习/深度学习 人工智能 并行计算
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
DeepSpeed Chat 是一款革命性的平台,专为简化和加速类ChatGPT模型的训练而设计。通过一键式脚本,用户可以轻松完成从预训练模型到生成自定义ChatGPT模型的全过程。该系统复刻了InstructGPT的RLHF训练方法,并集成了一系列优化技术,如DeepSpeed Hybrid Engine,大幅提升了训练效率和经济性。使用DeepSpeed Chat,即使是拥有数千亿参数的大模型,也能在短时间内完成训练,且成本显著降低。无论是单GPU还是多GPU集群环境,DeepSpeed Chat都能提供卓越的性能和易用性,让RLHF训练变得更加普及。
DeepSpeed Chat: 一键式RLHF训练,让你的类ChatGPT千亿大模型提速省钱15倍
|
3月前
|
机器学习/深度学习 存储 自然语言处理
大语言模型参数真的必须要万亿以上吗?
本文探讨了大语言模型(LLMs)的发展及其在自然语言处理领域的应用。随着模型规模的不断增大,文章分析了参数规模与性能之间的关系,并展示了不同规模模型的优势与挑战。此外,文中还提供了代码示例,介绍了参数设置的方法。未来研究方向包括模型压缩和多模态学习,以进一步优化模型性能。总之,选择合适的模型规模对于平衡性能和效率至关重要。
|
4月前
|
数据采集 存储
万亿token!史上最大多模态数据集诞生
【8月更文挑战第18天】MINT-1T是由Anas Awadalla等创建的迄今最大规模开源多模态数据集,含1万亿文本token及34亿图像,规模为现有数据集10倍。它引入了新数据源如PDF和ArXiv论文,提供多样化训练材料。经验证,使用MINT-1T训练的模型性能优异。尽管存在数据质量等挑战,但通过预处理可克服。论文详情见[链接]。
83 3
|
6月前
|
人工智能 自然语言处理 测试技术
next-token被淘汰!Meta实测多token训练方法,推理提速3倍,性能大涨10%+
【6月更文挑战第11天】Meta AI的最新研究表明,多token训练方法能提升大型语言模型的性能和推理速度。与传统next-token预测相比,该方法让模型预测多个未来token,增强上下文理解和生成能力。实验显示,这种方法在代码生成、摘要生成和数学问题解答等任务上性能提升10%+,推理速度提升至原来的3倍,为模型部署提供了更优选择。论文链接:https://arxiv.org/pdf/2404.19737
83 1
|
7月前
|
自然语言处理
Meta首发变色龙挑战GPT-4o,34B参数引领多模态革命!10万亿token训练刷新SOTA
【5月更文挑战第27天】Meta推出34B参数的多模态模型Chameleon,通过早期融合技术处理图像和文本,实现全面的多模态建模。在10万亿token的训练数据下,Chameleon在图像字幕生成和文本推理任务中刷新SOTA,展现出在混合模态生成和推理的潜力。然而,模型可能无法完全捕捉图像语义信息,且在某些特定任务上有优化空间。[论文链接](https://arxiv.org/pdf/2405.09818)
104 1
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
革命新架构掀翻Transformer!无限上下文处理,2万亿token碾压Llama 2
【4月更文挑战第28天】清华大学研究团队提出了Megalodon,一种针对长序列数据优化的Transformer模型。为解决Transformer的计算复杂度和上下文限制,Megalodon采用了CEMA改进注意力机制,降低计算量和内存需求;引入时间步长归一化层增强稳定性;使用归一化注意力机制提升注意力分配;并借助预归一化与双跳残差配置加速模型收敛。在与Llama 2的对比实验中,Megalodon在70亿参数和2万亿训练token规模下展现出更优性能。论文链接:https://arxiv.org/abs/2404.08801
73 2
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
2万亿训练数据,120亿参数!开源大模型Stable LM 2-12B
【4月更文挑战第19天】Stability AI团队推出了120亿参数、2万亿训练数据的Stable LM 2-12B语言模型,成为公开模型的新标杆。该模型采用Transformer架构,支持多语言处理,并公开训练细节,促进AI技术发展。然而,其大规模带来资源需求增加及准确性的挑战,需关注模型优化、输出可靠性及地域文化适应性。
96 1
|
人工智能 PyTorch 测试技术
一个开源方案,极速预训练650亿参数LLaMA
一个开源方案,极速预训练650亿参数LLaMA
367 0
一个开源方案,极速预训练650亿参数LLaMA
|
人工智能 安全 自动驾驶
GPT-4是8x2200亿参数的混合模型?这个小道消息今天传疯了
GPT-4是8x2200亿参数的混合模型?这个小道消息今天传疯了
124 0