基于深度学习的人脸面部表情识别系统【含Python源码+PyqtUI界面+原理详解】

简介: 基于深度学习的人脸面部表情识别系统【含Python源码+PyqtUI界面+原理详解】

前言

人类的面部表情变化可以传达出其内心的情绪变化,表情是人类内心世界的真实写照。目前最常见的是将人类的表情定义为7中,分别是:悲伤害怕厌恶高兴生气惊讶中立。这也组成了现今的人脸表情识别研究中的七种基础面部表情。

由于不同的面部表情,可以反映出在不同情景下人们的情绪变化以及心理变化,因此面部表情的识别对于研究人类行为和心理活动,具有十分重要的研究意义和实际应用价值。现如今,面部表情识别主要使用计算机对人类面部表情进行分析识别,从而分析认得情绪变化,这在人机交互、社交网络分析、远程医疗以及刑侦监测等方面都具有重要意义。

博主根据深度学习网络模型,开发了一款简易的人脸面部表情识别系统,可以通过图片视频摄像头3种方式进行人脸面部表情识别,并且展示识别结果。可以识别悲伤害怕厌恶高兴生气惊讶中立这7种常见表情,感兴趣的小伙伴可以自己试试。

觉得不错的小伙伴,感谢点赞、关注加收藏!如果大家有任何建议或意见,欢迎在评论区留言交流!

界面如下图:


一、软件核心功能介绍及效果演示

(1)图片表情识别

点击打开图片按钮,选择需要识别的图片即可,操作演示如下:


(2)视频面部表情识别

点击打开视频按钮,选择需要识别的视频即可,操作演示如下:


(3)摄像头面部表情识别

点击打开摄像头按钮,即可开启摄像头,再次点击该按钮,会关闭摄像头,操作演示如下:


二、人脸面部表情识别的基本原理

1.基本原理

人脸面部表情识别通常可以划分为四个步骤:包括图像获取人脸检测面部图像预处理表情分类。其中,人脸检测,面部图像预处理(脸部特征提取)和面部表情分类是面部表情识别的三个关键环节。面部表情识别的基本流程如下图所示:

我们首先可以通过比较常用的人脸检测库face_recognition,来实现人脸区域的检测,并画在图片上。核心代码如下:

image_path = 'TestImages/2.jpg'
image = cv2.imread(image_path)
face_locations = face_recognition.face_locations(image)
num = len(face_locations)
face = []
if num:
    for face_location in face_locations:
        top, right, bottom, left = face_location
        face.append(image[top:bottom, left:right])
        image = cv2.rectangle(image,(left, top), (right, bottom), (50, 50, 250),3)

检测出的上述人脸区域后,然后将人脸区域提取出来,并转化为人脸检测模型需要的48*48大小。传入模型进行人脸表情检测,取概率最大的分类,并将表情识别结果画在图片上,核心代码如下:

# 加载训练好的DenseNet121深度学习模型
inputs = keras.Input(shape=(48, 48, 1), batch_size=64)
x = create_dense_net(7, inputs, include_top=True, depth=121, nb_dense_block=4, growth_rate=16, nb_filter=-1,
                     nb_layers_per_block=[6, 12, 32, 32], bottleneck=True, reduction=0.5, dropout_rate=0.2,
                     activation='softmax')
model = tf.keras.Model(inputs, x, name='densenet121')
filepath = 'models/DenseNet121.h5'
model.load_weights(filepath)
# 进行人脸表情识别
image = cv2.imread(image_path)
frame, faces, locations = face_detect(image)
if faces is not None:
    for i in range(len(faces)):
        top, right, bottom, left = locations[i]
        face = cv2.cvtColor(faces[i], cv2.COLOR_BGR2GRAY)
        face = cv2.resize(face, (48, 48))
        face = face / 255.0
        num = np.argmax(model.predict(np.reshape(face, (-1, 48, 48, 1))))
        label = labeldict[num]
        frame = cv2.putText(frame, label, (left, top-10), cv2.FONT_ITALIC, 0.8, (0, 0, 250), 2,
                            cv2.LINE_AA)
cv2.imshow('frame',frame)
cv2.waitKey(0)


基于以上内容,博主基于python+ pyqt5开发了一个简洁界面的人脸面部表情识别系统。也就是第二部分介绍的内容。

目录
打赏
0
0
0
0
127
分享
相关文章
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
261 5
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
76 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
121 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
使用 OpenCV 和 Python 轻松实现人脸检测
本文介绍如何使用OpenCV和Python实现人脸检测。首先,确保安装了OpenCV库并加载预训练的Haar特征模型。接着,通过读取图像或视频帧,将其转换为灰度图并使用`detectMultiScale`方法进行人脸检测。检测到的人脸用矩形框标出并显示。优化方法包括调整参数、多尺度检测及使用更先进模型。人脸检测是计算机视觉的基础技术,具有广泛应用前景。
93 10
基于Python深度学习果蔬识别系统实现
本项目基于Python和TensorFlow,使用ResNet卷积神经网络模型,对12种常见果蔬(如土豆、苹果等)的图像数据集进行训练,构建了一个高精度的果蔬识别系统。系统通过Django框架搭建Web端可视化界面,用户可上传图片并自动识别果蔬种类。该项目旨在提高农业生产效率,广泛应用于食品安全、智能农业等领域。CNN凭借其强大的特征提取能力,在图像分类任务中表现出色,为实现高效的自动化果蔬识别提供了技术支持。
100 0
基于Python深度学习果蔬识别系统实现
Python 高级编程与实战:深入理解性能优化与调试技巧
本文深入探讨了Python的性能优化与调试技巧,涵盖profiling、caching、Cython等优化工具,以及pdb、logging、assert等调试方法。通过实战项目,如优化斐波那契数列计算和调试Web应用,帮助读者掌握这些技术,提升编程效率。附有进一步学习资源,助力读者深入学习。
Python 高级编程与实战:深入理解数据科学与机器学习
本文深入探讨了Python在数据科学与机器学习中的应用,介绍了pandas、numpy、matplotlib等数据科学工具,以及scikit-learn、tensorflow、keras等机器学习库。通过实战项目,如数据可视化和鸢尾花数据集分类,帮助读者掌握这些技术。最后提供了进一步学习资源,助力提升Python编程技能。
|
13天前
|
[oeasy]python074_ai辅助编程_水果程序_fruits_apple_banana_加法_python之禅
本文回顾了从模块导入变量和函数的方法,并通过一个求和程序实例,讲解了Python中输入处理、类型转换及异常处理的应用。重点分析了“明了胜于晦涩”(Explicit is better than implicit)的Python之禅理念,强调代码应清晰明确。最后总结了加法运算程序的实现过程,并预告后续内容将深入探讨变量类型的隐式与显式问题。附有相关资源链接供进一步学习。
24 4
Python 高级编程与实战:深入理解设计模式与软件架构
本文深入探讨了Python中的设计模式与软件架构,涵盖单例、工厂、观察者模式及MVC、微服务架构,并通过实战项目如插件系统和Web应用帮助读者掌握这些技术。文章提供了代码示例,便于理解和实践。最后推荐了进一步学习的资源,助力提升Python编程技能。