Python采集数据处理:利用Pandas进行组排序和筛选

本文涉及的产品
实时计算 Flink 版,1000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 使用Python的Pandas库,结合亿牛云代理和多线程技术,提升网络爬虫数据处理效率。通过代理IP避免封锁,多线程并发采集,示例代码展示数据分组、排序、筛选及代理IP配置和线程管理。

亿牛云代理.png

概述

在现代数据处理和分析中,网络爬虫技术变得越来越重要。通过网络爬虫,我们可以自动化地从网页上收集大量的数据。然而,如何高效地处理和筛选这些数据是一个关键问题。本文将介绍如何使用Python的Pandas库对采集到的数据进行组排序和筛选,并结合代理IP技术和多线程技术,提高数据采集效率。本文的示例将使用爬虫代理服务。

细节

1. 数据采集和处理概述

网络爬虫用于从网站上自动收集数据。采集到的数据往往是非结构化的,使用Pandas库可以帮助我们将这些数据转换为结构化的数据格式(如DataFrame),并进行各种数据处理操作。我们将演示如何使用Pandas对数据进行分组、排序和筛选。

2. 使用代理IP技术

网络爬虫在大量请求网站时可能会被网站封锁。为了避免这种情况,我们可以使用代理IP技术,通过多个IP地址发送请求,从而提高爬虫的稳定性。亿牛云爬虫代理提供了方便的代理IP服务,我们将使用他们的服务进行示例。

3. 实现多线程技术

为了提高数据采集的效率,我们可以使用多线程技术同时进行多个数据采集任务。Python的threading模块可以帮助我们轻松实现多线程。

实现代码

以下是一个完整的Python示例,展示如何使用Pandas处理数据,并结合代理IP和多线程技术进行数据采集:

import pandas as pd
import requests
import threading
from queue import Queue

# 代理IP配置(亿牛云爬虫代理服务)
proxy_host = "proxy.16yun.cn"
proxy_port = "12345"
proxy_user = "your_username"
proxy_pass = "your_password"
proxies = {
   
   
    "http": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
    "https": f"http://{proxy_user}:{proxy_pass}@{proxy_host}:{proxy_port}",
}

# 多线程队列
url_queue = Queue()

# 待采集的URL列表
urls = [
    "http://example.com/data1",
    "http://example.com/data2",
    "http://example.com/data3",
    # 添加更多URL
]

# 将URL加入队列
for url in urls:
    url_queue.put(url)

# 爬虫函数
def fetch_data():
    while not url_queue.empty():
        url = url_queue.get()
        try:
            response = requests.get(url, proxies=proxies)
            if response.status_code == 200:
                data = response.json()  # 假设返回数据为JSON格式
                process_data(data)
            else:
                print(f"Failed to fetch {url}: {response.status_code}")
        except Exception as e:
            print(f"Error fetching {url}: {str(e)}")
        url_queue.task_done()

# 数据处理函数
def process_data(data):
    df = pd.DataFrame(data)
    # 数据分组并排序
    grouped = df.groupby("category")  # 假设有一个'category'列
    sorted_groups = grouped.size().sort_values(ascending=False)
    # 筛选出较大的组
    filtered_groups = sorted_groups[sorted_groups > 10]
    print(filtered_groups)

# 创建和启动线程
threads = []
for i in range(5):  # 创建5个线程
    thread = threading.Thread(target=fetch_data)
    thread.start()
    threads.append(thread)

# 等待所有线程完成
for thread in threads:
    thread.join()

url_queue.join()

print("Data fetching and processing complete.")

代码解释

  1. 代理IP配置: 配置了亿牛云爬虫代理的域名、端口、用户名和密码,并设置了proxies字典。
  2. 多线程队列: 使用Queue模块创建一个线程安全的队列,并将待采集的URL加入队列。
  3. 爬虫函数: fetch_data函数从队列中获取URL,使用代理IP发送请求,获取数据后调用process_data函数进行处理。
  4. 数据处理函数: process_data函数将获取的数据转换为Pandas DataFrame,按“category”列进行分组,排序后筛选出较大的组。
  5. 多线程实现: 创建并启动5个线程,调用fetch_data函数进行数据采集,并等待所有线程完成任务。

总结

通过本文的示例,我们展示了如何使用Pandas进行数据的分组排序和筛选,并结合代理IP和多线程技术提高数据采集的效率。希望本文对您在数据采集和处理方面有所帮助。如果您有任何问题或建议,欢迎交流讨论。

相关文章
|
3月前
|
JSON API 数据格式
Python采集京东商品评论API接口示例,json数据返回
下面是一个使用Python采集京东商品评论的完整示例,包括API请求、JSON数据解析
|
13天前
|
JSON API 数据安全/隐私保护
Python采集淘宝评论API接口及JSON数据返回全流程指南
Python采集淘宝评论API接口及JSON数据返回全流程指南
|
4月前
|
测试技术 数据处理 Python
Python列表推导式:简洁高效的数据处理利器
Python列表推导式:简洁高效的数据处理利器
251 80
|
7月前
|
机器学习/深度学习 算法 Python
机器学习特征筛选:向后淘汰法原理与Python实现
向后淘汰法(Backward Elimination)是机器学习中一种重要的特征选择技术,通过系统性地移除对模型贡献较小的特征,以提高模型性能和可解释性。该方法从完整特征集出发,逐步剔除不重要的特征,最终保留最具影响力的变量子集。其优势包括提升模型简洁性和性能,减少过拟合,降低计算复杂度。然而,该方法在高维特征空间中计算成本较高,且可能陷入局部最优解。适用于线性回归、逻辑回归等统计学习模型。
254 7
|
2月前
|
API Python
Python采集淘宝店铺所有商品API接口指南
淘宝没有公开的官方API供采集店铺商品数据,但可以通过以下几种方法获取商品信息。需要注意的是,淘宝有严格的反爬机制,直接采集可能违反其服务条款。
|
3月前
|
数据采集 XML 数据处理
淘宝商家采集工具,淘宝买家联系方式采集,淘宝卖家旺旺采集软件【python】
以上代码实现了一个基础的淘宝数据采集框架,包含爬虫核心、数据处理和代理管理三个模块。
|
4月前
|
数据采集 数据可视化 JavaScript
用Python采集CBC新闻:如何借助海外代理IP构建稳定采集方案
本文介绍了如何利用Python技术栈结合海外代理IP采集加拿大CBC新闻数据。内容涵盖使用海外代理IP的必要性、青果代理IP的优势、实战爬取流程、数据清洗与可视化分析方法,以及高效构建大规模新闻采集方案的建议。适用于需要获取国际政治经济动态信息的商业决策、市场预测及学术研究场景。
|
3月前
|
数据采集 存储 Java
多线程Python爬虫:加速大规模学术文献采集
多线程Python爬虫:加速大规模学术文献采集
|
5月前
|
数据采集 自然语言处理 Java
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战
本文以反面教材形式,剖析了在使用 Playwright 爬取懂车帝车友圈问答数据时常见的配置错误(如未设置代理、Cookie 和 User-Agent),并提供了 Python、Java 和 .NET 三种语言的修复代码示例。通过错误示例 → 问题剖析 → 修复过程 → 总结教训的完整流程,帮助读者掌握如何正确配置爬虫代理及其它必要参数,避免 IP 封禁和反爬检测,实现高效数据采集与分析。
248 3
Playwright 多语言一体化——Python/Java/.NET 全栈采集实战

推荐镜像

更多