计算机网络:数据交换方式

简介: 计算机网络:数据交换方式

本博客介绍计算机之间数据交换的三种方式,分别是电路交换、分组交换以及报文交换。

电路交换

我们首先来看电路交换,在电话问世后不久,人们就发现要让所有的电话机都两两相连接是不现实的。例如两部电话只需要用一对电线就能够互相连接起来,但若有 5 部电话要两两相连,则需要 10 对电线。

当电话机的数量很大时,这种连接方法需要的电线数量就太大了。例如,如果有 n 部电话机需要两两相连,那么一共需要多少对电线呢?答案是(n - 1) * n / 2。


于是人们认识到要使得每一部电话能够很方便地和另一部电话进行通信,就应当使用一个中间设备将这些电话连接起来。这个中间设备就是电话交换机,每一部电话都连接到电话交换机上:

可以把电话交换机简单的看成是一个有多个开关的开关器,可以将需要通信的任意两部电话的电话线路按需接通,从而大大减少了连接的电话线数量。

当电话机的数量增多时,就需要使用很多彼此连接起来的电话交换机来完成全网的交换任务。用这样的方法就构成了覆盖全世界的电信网,电话交换机接通电话线的方式称为电路交换

从通信资源的分配角度来看,交换就是按照某种方式动态的分配传输线路的资源。我们来看下面这个电路交换的示意图:

应当注意的是用户线归电话用户专用,而电话交换机之间拥有的大量中继线则是许多用户共享的。

电路交换有以下三个步骤:

  • 建立连接,也就是分配通信资源。例如在使用电路交换打电话之前,必须先拨号请求建立连接。当被叫用户听到电话交换机送来的拨号音并接通,从主叫端到被叫端就建立了一条连接,也就是一条专用的物理通路,这条连接保证了双方通话时所需的通信资源,而这些资源在双方通信时不会被其他用户占用。
  • 通话,也就是主叫和被叫双方互相通电话。在整个通话期间,之前建立连接所分配的通信资源始终被占用。
  • 释放连接,也就是通话完毕挂机后,电话交换机释放刚才使用的这条专用的物理通路。换句话说是把刚才占用的所有通信资源归还给电信网,

这种必须通过建立连接(占用通信资源),通话(一直占用通信资源),释放连接(归还通信资源)三个步骤的交换方式,称为电路交换

那么如果使用电路交换来传送计算机数据是否可行?

应该说,尽管采用电路交换可以实现计算机之间的数据传送,但是线路的传输效率往往很低,这是因为计算机数据是突发式的出现在传输线路上的。

突发性:

计算机在传输数据时,不会一直在信道中传输数据,而是间歇性的传输数据

计算机数据具有突发性,这导致使用电路交换传送数据时通信线路的利用率很低,真正用来传送数据的时间往往不到10%,甚至不到 1%。已被用户占用的通信线路资源在绝大部分时间里都是空闲的。

试想一下,这种情况,当用户正在输入和编辑一份带传输的文件时,用户所占用的通信资源暂时未被利用,该通信资源也不能被其他用户利用,宝贵的通信线路资源白白被浪费了。因此,计算机网络通常采用分组交换而不是电路交换。

分组交换

假设这是因特网的一部分,在因特网中最重要的分组交换机就是路由器,他负责将各种网络互联起来,并对接收到的分组进行转发,也就是进行分组交换。

我们来看这样一个例子,假设主机 H6 的用户要给主机 H2 的用户发送一条消息,通常我们把表示该消息的整块数据称为一个报文

在发送报文之前,先把较长的报文划分成为一个更小的等长数据段,在每一个数据段前面加上一些由必要的控制信息组成的手部后,就构成了一个分组,也可简称为包,相应的手部也可称为包头。


那么添加手部的作用是什么?这不是额外加大了带传输的数据量吗?


实际上手部起着非常关键的作用,相信大家至少能想到手部中肯定包含了分组的目的地址,否则分组传输路径中的各分组交换机,也就是各路由器就不知道如何转发分组了。分组交换机收到一个分组后,先将分组暂时存储下来,再检查其手部,按照手部中的目的地址进行查表转发,找到合适的转发接口,通过该接口将分组转发给下一个分组。

主机 H6 将所构造出的各分组依次发送出去,各分组经过途中各分组交换机的存储、转发,最终到达主机H2。

主机 H2 收到这些分组后,去掉他们的手部,将各数据段组合还原出原始报文:

需要说明的是,为了初学者容易理解,在本例中我们只演示出了分组传输过程中的两种情况。一种是各分组从源站到达目的站可以走不同的路径,也就是不同的路由。另一种是分组乱序,也就是分组到达目的站的顺序不一定与分组在源站的发送顺序相同。对于可能出现的分组丢失、误码重复等问题并没有演示,这些内容将在以后详细介绍。


在上述的分组交换过程中,发送方所要完成的任务是构造分组和发送分组。

路由器,也就是分组交换机,所要完成的任务是缓存分组和转发分组,简称为存储转发。

接收方所要完成的任务是接收分组和还原报文。


报文交换

与分组交换类似,报文交换中的交换节点也采用存储转发方式,但报文交换对报文的大小没有限制,这就要求交换节点需要有较大的缓存空间。需要注意的是,报文交换主要用于早期的电报通信网,现在较少使用,通常被较先进的分组交换方式所取代。因此我们不再详细介绍报文交换了。


传输对比

接下来我们对电路交换、报文交换、分组交换这三种交换方式进行一下对比。

假设a、b、c、 d 是分组传输路径上所要经过的四个节点,纵坐标为时间。

电路交换:

对于电路交换通信之前首先要建立连接。连接建立好之后就可以使用已建立好的连接进行数据传送。数据传送结束后需要释放连接以归还之前建立连接所占用的通信线路资源。

报文交换:

对于报文交换,可以随时发送报文,而不需要事先建立连接,整个报文先传送到相邻节点,交换机全部存储下来后进行查表转发到下一个节点交换机。

分组交换:

对于分组交换,可以随时发送分组,而不需要事先建立连接。构成原始报文的一个分组,依次在各节点交换机上存储、转发。各节点交换机在发送分组的同时还缓存接收到的分组。

  • 电路交换:一旦建立连接,中间的各节点交换机就是直通形式的比特流,可以直达终点。
  • 报文交换:整个报文需要在各节点交换机上进行存储转发,由于不限制报文的大小,因此需要各节点交换机都具有较大的缓存空间。
  • 分组交换:构成原始报文的一个个分组,在各节点交换机上进行存储转发。相比报文交换减少了转发时延,还可以避免过长的报文,长时间占用链路,同时也有利于进行差错控制。

最后我们总结一下这三种交换方式各自的优缺点:

电路交换:

优点 缺点
通信时延小 建立连接时间长
有序传输 独占线路,使用率低
没有冲突 灵活性差
适用范围广 难以规格化
实时性强
控制简单

电路交换的优点:

  • 通信时延小:这是因为通信线路为通信双方用户专用数据直达,因此通信时延非常小。当连续传输大量数据时,这一优点非常明显。
  • 有序传输:这是因为通信双方之间只有一条专用的通信线路,数据只在这一条线路上传输,因此不存在失序问题。
  • 没有冲突:不同的通信双方拥有不同的信道,不会出现征用物理信道的问题。
  • 适用范围广:电路交换既适用于传输模拟信号,也适用于传输数字信号。
  • 实时性强:这主要得益于其通信时延小的优点。
  • 控制简单:电路交换的节点。交换机及其控制都比较简单。

电路交换的缺点:

  • 建立连接时间长:电路交换的平均连接建立时间对计算机通信来说太长了,
  • 线路独占使用效率低:电路交换一旦建立连接物理通路就被通信双方独占,即使通信线路空闲,也不能供其他用户使用,因而信道利用率很低。
  • 灵活性差:只要连接所建立的物理通路中的任何一点出现了故障,就必须重新拨号,建立新的连接,这对十分紧急和重要的通信是很不利的。
  • 难以规格化:电路交换时,数据直达不同类型、不同规格、不同速率的终端,很难相互进行通信,也难以在通信过程中进行差错控制。

报文交换:

优点 缺点
无需建立连接 引起了转发时延
动态分配链路 需要较大存储缓存空间
提高线路可靠性 需要传输额外信息量
提高线路利用率
提供多目标服务

报文交换的优点:

  • 无需建立连接:报文交换不需要为通信双方预先建立一条专用的通信线路,不存在建立连接的时延,用户可以随时发送报文。
  • 动态分配线路:当发送方把报文传送给节点交换机时,节点交换机先存储整个报文,然后选择一条合适的空闲线路将报文发送出去。
  • 提高线路可靠性:如果某条传输路径发生故障,会重新选择另一条路径传输数据,因此提高了传输的可靠性。
  • 提高线路利用率:通信双方不是固定占用一条通信线路,而是在不同的时间分段部分占用物理线路,因而大大提高了通信线路的利用率。
  • 提供多目标服务:一个报文可以同时发送给多个目的地址,这在电路交换中是很难实现的。

报文交换的缺点:

  • 引起了转发时延:这是因为报文在节点交换机上要经历存储、转发的过程。
  • 需要较大的存储缓存空间:这是因为报文交换对报文的大小没有限制。
  • 需要传输额外的信息量:这是因为报文需要携带目标地址、原地址等信息。

分组交换:

优点 缺点
无需建立连接 引起了转发时延
提高线路利用率 需要较大存储缓存空间
简化了存储管理 对于数据报服务,存在失序,丢失或重复分组的问题
加速传输 对于虚电路服务,存在呼叫建立,数据传输和虚电路释放三个过程
减少出错概率和重发数据量

分组交换的优点如下,

  • 无需建立连接:分组交换不需要为通信双方预先建立一条专用的通信线路,不存在建立连接的时延,用户可以随时发送分组
  • 线路利用率高:通信双方不是固定占用一条通信线路,而是在不同的时间分段部分占用物理线路,因而大大提高了通信线路的利用率。
  • 简化了存储管理:这是相对于报文交换而言的,因为分组的长度固定,相应的缓冲区的大小也固定,管理起来相对容易。
  • 加速传输:由于分组是逐个传输的,这就使得后一个分组的存储操作与前一个分组的转发操作可以同时进行。
  • 减少出错概率和重发数据量:因为分组比报文小,因此出错概率必然减小。即便分组出错,也只需重传出错的部分,这比重传整个报文的数据量小很多,这样不仅提高了可靠性,也减少了传输时延。

分组交换的缺点如下,

  • 引起了转发时延:这是因为分组在节点交换机上要经历存储、转发的过程。
  • 需要传输额外的信息量:将原始报文分割成等长的数据块,每个数据块都要加上原地址、目的地址等控制信息,从而构成分组,因此使得传送的信息量增大了。
  • 采用数据报服务进行分组交换:可能会出现失序、丢失或重复分组**:分组到达目的节点时,需要重新还原成原始报文比较麻烦。
  • 采用虚电路服务进行分组交换:虽然没有分组失序问题,但由呼叫建立、数据传输和虚电路释放三个过程。


相关文章
|
3月前
|
监控 安全 网络安全
云计算与网络安全:保护数据的关键策略
【9月更文挑战第34天】在数字化时代,云计算已成为企业和个人存储、处理数据的优选方式。然而,随着云服务的普及,网络安全问题也日益凸显。本文将探讨云计算环境中的网络安全挑战,并提供一系列策略来加强信息安全。从基础的数据加密到复杂的访问控制机制,我们将一探究竟如何在享受云服务便利的同时,确保数据的安全性和隐私性不被侵犯。
74 10
|
4月前
|
存储 安全 网络安全
云计算与网络安全:守护数据,构筑未来
在当今的信息化时代,云计算已成为推动技术革新的重要力量。然而,随之而来的网络安全问题也日益凸显。本文从云服务、网络安全和信息安全等技术领域展开,探讨了云计算在为生活带来便捷的同时,如何通过技术创新和策略实施来确保网络环境的安全性和数据的保密性。
|
1天前
|
前端开发 小程序 Java
uniapp-网络数据请求全教程
这篇文档介绍了如何在uni-app项目中使用第三方包发起网络请求
10 3
|
2月前
|
安全 算法 网络安全
量子计算与网络安全:保护数据的新方法
量子计算的崛起为网络安全带来了新的挑战和机遇。本文介绍了量子计算的基本原理,重点探讨了量子加密技术,如量子密钥分发(QKD)和量子签名,这些技术利用量子物理的特性,提供更高的安全性和可扩展性。未来,量子加密将在金融、政府通信等领域发挥重要作用,但仍需克服量子硬件不稳定性和算法优化等挑战。
|
2月前
|
存储 安全 网络安全
云计算与网络安全:保护数据的新策略
【10月更文挑战第28天】随着云计算的广泛应用,网络安全问题日益突出。本文将深入探讨云计算环境下的网络安全挑战,并提出有效的安全策略和措施。我们将分析云服务中的安全风险,探讨如何通过技术和管理措施来提升信息安全水平,包括加密技术、访问控制、安全审计等。此外,文章还将分享一些实用的代码示例,帮助读者更好地理解和应用这些安全策略。
|
2月前
|
弹性计算 安全 容灾
阿里云DTS踩坑经验分享系列|使用VPC数据通道解决网络冲突问题
阿里云DTS作为数据世界高速传输通道的建造者,每周为您分享一个避坑技巧,助力数据之旅更加快捷、便利、安全。本文介绍如何使用VPC数据通道解决网络冲突问题。
135 0
|
2月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:从漏洞到加密,保护数据的关键步骤
【10月更文挑战第24天】在数字化时代,网络安全和信息安全是维护个人隐私和企业资产的前线防线。本文将探讨网络安全中的常见漏洞、加密技术的重要性以及如何通过提高安全意识来防范潜在的网络威胁。我们将深入理解网络安全的基本概念,学习如何识别和应对安全威胁,并掌握保护信息不被非法访问的策略。无论你是IT专业人士还是日常互联网用户,这篇文章都将为你提供宝贵的知识和技能,帮助你在网络世界中更安全地航行。
|
3月前
|
存储 安全 网络安全
云计算与网络安全:如何保护您的数据
【10月更文挑战第21天】在这篇文章中,我们将探讨云计算和网络安全的关系。随着云计算的普及,网络安全问题日益突出。我们将介绍云服务的基本概念,以及如何通过网络安全措施来保护您的数据。最后,我们将提供一些代码示例,帮助您更好地理解这些概念。
|
4月前
|
数据采集 存储 监控
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
本文探讨了如何利用 PHP 的 `set_time_limit()` 与爬虫工具的 `setTrafficLimit()` 方法,结合多线程和代理 IP 技术,高效稳定地抓取百度云盘的公开资源。通过设置脚本执行时间和流量限制,使用多线程提高抓取效率,并通过代理 IP 防止 IP 封禁,确保长时间稳定运行。文章还提供了示例代码,展示了如何具体实现这一过程,并加入了数据分类统计功能以监控抓取效果。
81 16
网络爬虫的最佳实践:结合 set_time_limit() 与 setTrafficLimit() 抓取云盘数据
|
3月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
86 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)