机器学习第8天:SVM分类

简介: 机器学习第8天:SVM分类

机器学习专栏

机器学习_Nowl的博客-CSDN博客

介绍

作用:判别种类

原理:找出一个决策边界,判断数据所处区域来识别种类

简单介绍一下SVM分类的思想,我们看下面这张图,两种分类都很不错,但是我们可以注意到第二种的决策边界与实例更远(它们之间的距离比较宽),而SVM分类就是一种寻找距每种实例最远的决策边界的算法


特征缩放

SVM算法对特征缩放很敏感(不处理算法效果会受很大影响)

特征缩放是什么意思呢,例如有身高数据和体重数据,若身高是m为单位,体重是g为单位,那么体重就比身高的数值大很多,有些机器学习算法就可能更关注某一个值,这时我们用特征缩放就可以把数据统一到相同的尺度上

示例代码

from sklearn.preprocessing import StandardScaler
import numpy as np
 
# 创建一个示例数据集
data = np.array([[1.0, 2.0, 3.0],
                 [4.0, 5.0, 6.0],
                 [7.0, 8.0, 9.0]])
 
# 创建StandardScaler对象
scaler = StandardScaler()
 
# 对数据进行标准化
scaled_data = scaler.fit_transform(data)
 
print("原始数据:\n", data)
print("\n标准化后的数据:\n", scaled_data)
 
# 结果是
# [[-1.22474487 -1.22474487 -1.22474487]
#  [ 0.          0.          0.        ]
#  [ 1.22474487  1.22474487  1.22474487]]

StandardScaler是一种数据标准化的方法,它对数据进行线性变换,使得数据的均值变为0,标准差变为1。

解释上面的数据

在每列上进行标准化,即对每个特征进行独立的标准化。每个数值是通过减去该列的均值,然后除以该列的标准差得到的。

  • 第一列:(1−4)/9=−1.22474487(1−4)/9=−1.22474487,(4−4)/9=0(4−4)/9=0,(7−4)/9=1.22474487(7−4)/9=1.22474487。
  • 第二列:(2−5)/9=−1.22474487(2−5)/9=−1.22474487,(5−5)/9=0(5−5)/9=0,(8−5)/9=1.22474487(8−5)/9=1.22474487。
  • 第三列:(3−6)/9=−1.22474487(3−6)/9=−1.22474487,(6−6)/9=0(6−6)/9=0,(9−6)/9=1.22474487(9−6)/9=1.22474487。

这样,标准化后的数据集就符合标准正态分布,每个特征的均值为0,标准差为1。


硬间隔与软间隔分类

硬间隔分类就是完全将不同的个体区分在不同的区域(不能有一点误差)

软间隔分类就是允许一些偏差(图中绿和红色的点都有一些出现在了对方的分区里)

硬间隔分类往往会出现一些问题,例如有时候模型不可能完全分成两类,同时,硬间隔分类往往可能导致过拟合,而软间隔分类的泛化能力就比硬间隔分类好很多


主要代码

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
 
 
model = Pipeline([
    ("scaler", StandardScaler()),
    ("linear_svc", LinearSVC(C=1, loss="hinge"))
])
 
model.fit(x, y)

代码解释

在这里,Pipeline的构造函数接受一个由元组组成的列表。每个元组的第一个元素是该步骤的名称(字符串),第二个元素是该步骤的实例。在这个例子中,第一个步骤是数据标准化,使用StandardScaler,命名为"scaler";第二个步骤是线性支持向量机,使用LinearSVC,命名为"linear_svc"。这两个步骤会按照列表中的顺序依次执行。

参数C是正则程度,hinge是SVM分类算法的损失函数,用来训练模型


非线性SVM分类

上述方法都是在数据集可线性分离时用到的,当数据集呈非线性怎么办,我们在回归任务中讲过一个思想,用PolynomialFeatures来产生多项式,再对每个项进行线性拟合,最后结合在一起得出决策边界

具体代码

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.preprocessing import PolynomialFeatures
from sklearn.svm import SVC
from sklearn.pipeline import make_pipeline
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score
 
# 生成非线性数据集
X, y = datasets.make_circles(n_samples=100, factor=0.5, noise=0.1, random_state=42)
 
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
 
# 使用多项式特征和线性SVM
degree = 3  # 多项式的次数
svm_classifier = make_pipeline(StandardScaler(), PolynomialFeatures(degree), SVC(kernel='linear', C=1))
svm_classifier.fit(X_train, y_train)
 
# 预测并计算准确率
y_pred = svm_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
 
 
# 绘制决策边界
def plot_decision_boundary(X, y, model, ax):
    h = .02
    x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
 
    Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
    Z = Z.reshape(xx.shape)
 
    ax.contourf(xx, yy, Z, alpha=0.8)
    ax.scatter(X[:, 0], X[:, 1], c=y, edgecolors='k', marker='o', s=80, linewidth=0.5)
 
    ax.set_xlim(xx.min(), xx.max())
    ax.set_ylim(yy.min(), yy.max())
 
 
# 绘制结果
fig, ax = plt.subplots(figsize=(8, 6))
plot_decision_boundary(X_train, y_train, svm_classifier, ax)
ax.set_title('Polynomial SVM Decision Boundary')
plt.show()

运行结果


结语

SVM分类是一种经典的分类算法,也叫大间隔分类算法。它可以用来线性分类,也可以非线性分类(可以与PolynomialFeatures结合,当然还有其他方法,我们之后再说)

相关文章
|
6天前
|
机器学习/深度学习 算法 数据挖掘
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-2
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
|
6天前
|
机器学习/深度学习 Python
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享-4
PYTHON银行机器学习:回归、随机森林、KNN近邻、决策树、高斯朴素贝叶斯、支持向量机SVM分析营销活动数据|数据分享
|
6天前
|
机器学习/深度学习 数据采集 算法
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
Python用逻辑回归、决策树、SVM、XGBoost 算法机器学习预测用户信贷行为数据分析报告
|
6天前
|
机器学习/深度学习
机器学习 —— 分类预测与集成学习(下)
机器学习 —— 分类预测与集成学习(下)
20 0
|
6天前
|
机器学习/深度学习 数据采集 数据可视化
机器学习 —— 分类预测与集成学习(上)
机器学习 —— 分类预测与集成学习
24 2
|
6天前
|
机器学习/深度学习 数据采集 算法
深入理解并应用机器学习算法:支持向量机(SVM)
【5月更文挑战第13天】支持向量机(SVM)是监督学习中的强分类算法,用于文本分类、图像识别等领域。它寻找超平面最大化间隔,支持向量是离超平面最近的样本点。SVM通过核函数处理非线性数据,软间隔和正则化避免过拟合。应用步骤包括数据预处理、选择核函数、训练模型、评估性能及应用预测。优点是高效、鲁棒和泛化能力强,但对参数敏感、不适合大规模数据集且对缺失数据敏感。理解SVM原理有助于优化实际问题的解决方案。
|
6天前
|
机器学习/深度学习 存储 算法
【机器学习】使用贝叶斯模型做分类时,可能会碰到什么问题?怎么解决?
【5月更文挑战第11天】【机器学习】使用贝叶斯模型做分类时,可能会碰到什么问题?怎么解决?
|
6天前
|
机器学习/深度学习 算法 Python
深入浅出Python机器学习:从零开始的SVM教程/厾罗
深入浅出Python机器学习:从零开始的SVM教程/厾罗
|
6天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的支持向量机(SVM)算法
【5月更文挑战第6天】在数据科学和人工智能的广阔天地中,支持向量机(SVM)以其强大的分类能力与理论深度成为机器学习领域中的一个闪亮的星。本文将深入探讨SVM的核心原理、关键特性以及实际应用案例,为读者提供一个清晰的视角来理解这一高级算法,并展示如何利用SVM解决实际问题。
72 7
|
6天前
|
机器学习/深度学习 数据采集 算法
【Python机器学习专栏】支持向量机(SVM)在Python中的实践
【4月更文挑战第30天】SVM是一种高效的监督学习算法,适用于分类和回归,尤其擅长处理高维和非线性问题。通过寻找最大边际超平面来分隔数据,SVM具有高效性、鲁棒性、灵活性和稀疏性等特点。

热门文章

最新文章