Java线程池ThreadPoolExcutor源码解读详解05-阻塞队列之DelayQueue原理及扩容机制详解

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
可观测可视化 Grafana 版,10个用户账号 1个月
简介: DelayQueue` 是 Java 中的一个线程安全的阻塞队列,它用于存储实现了 `Delayed` 接口的元素,这些元素都有一个延迟时间。当元素的延迟时间过去之后,它们才能被从队列中取出。以下是摘要:1. **核心特性**: - 基于 `PriorityQueue` 实现,元素按延迟时间排序,优先级高的先出队。 - 使用 `ReentrantLock` 和条件变量 `available` 控制并发。 - 只有延迟时间小于0的元素才能被取出。 - 不允许插入 `null` 元素。2. **构造器**: - 默认构造器创建无初始元素的队列。 - 可以


💪🏻 制定明确可量化的目标,坚持默默的做事。




一、继承实现关系图

image.gif 1711819050810.png

二、低层数据存储结构

public class DelayQueue<E extends Delayed> extends AbstractQueue<E>
    implements BlockingQueue<E> {
...
private final transient ReentrantLock lock = new ReentrantLock();
private final PriorityQueue<E> q = new PriorityQueue<E>();
private Thread leader;
private final Condition available = lock.newCondition();
...
}

image.gif

说明:

  • lock:添加和获取锁(同一把锁)
  • q:PriorityQueue存储数据(实现优化级队列)
  • leader:  标记正在延迟等待出队的线程
  • available: 出队阻塞对象

构造器:

public DelayQueue() {}
public DelayQueue(Collection<? extends E> c) {
    this.addAll(c);
}

image.gif

说明:

  • 默认无参构造器
  • 第二个传入一个集合初始化队列元素构造器

三、特点及优缺点

3.1 特点

  • 支持优先级排序的无界阻塞延迟队列,优先级高的先出队,先先级低的后出队
  • 存储数据结构为数组,以二叉堆形式存储于数组中,二叉堆叶子节点均小于父节点
  • 只有一把锁(出队有阻塞)
  • 不可添加为null的元素
  • 出队取队头元素(只有队头元素的delay为0时才能取出元素)
  • 初始容量大小为11
  • 最大可扩容到Integer.MAX_VALUE

3.2 优缺点

  • 根据排序规则排序(元素必须实现 Delayed接口)
  • put不阻塞(若生产速度快于消费速度,会耗尽所有的可用堆内空间)
  • 优先级排序无界阻塞队列(无界是说Integer.MAX_VALUE非常大,一般不会达这个数字内存就已经撑不住)
  • 取数据锁为延迟阻塞出队
  • 内部数组长度不够会进行扩容
  • 新增元素进行最小二叉推排序

四、源码详解

读取重要源码:

  • 添加任务方法
  • 获取和删除任务方法
  • 扩容

阅读明白这几个接口即可,其它都很简单。

4.1 put、offer

public void put(E e) {
    offer(e);
}
public boolean offer(E e) {
    final ReentrantLock lock = this.lock;
    lock.lock();
    try {
        q.offer(e);
        if (q.peek() == e) {
            // 刚插入就在队首,说明队列是空的,目前只有一个元素 
            //     则唤醒队列为空时的阻塞
            //     唤醒队列leader不为空时的阻塞
            leader = null;
            available.signal();
        }
        return true;
    } finally {
        lock.unlock();
    }
}
// p.offer(e)
public boolean offer(E e) {
    // 插入元素不允许为空
    if (e == null)
        throw new NullPointerException();
    modCount++;
    int i = size;
    if (i >= queue.length)
        // 队列为空则扩容
        grow(i + 1);
    // 按优先级插入到队列中
    siftUp(i, e);
    // 队列元素个数+1
    size = i + 1;
    return true;
}
/**
 * 按优先级插入到队列中
 */
private void siftUp(int k, E x) {
    if (comparator != null)
        siftUpUsingComparator(k, x, queue, comparator);
    else
        siftUpComparable(k, x, queue);
}

image.gif

4.2 take

  • 加锁
  • 读取队首元素,若为空则阻塞,
  • 若不为空且过期时间为0,则取出队首元素),队列元素重排
  • 最后一个元素n 并且最后一个元素赋值为null
  • 队列按排序规则从子节点中取元素填充父节点
  • 子节点中取元素似为空的父节点,重复上一步骤,直到取出的子节点为叶子节点leaf
  • first = null 解决高并发情况下某一线程a延迟等待出队,而其它线程因leader!=null而available.await()等待,因线程a出取first而其它线程first一直不为空,导致JVM无法回收导致内存泄漏问题
  • 判断leader元素是否为空,不为空的话阻塞当前线程
  • leader元素为空,则设置leader为当前线程,阻塞delay时间,delay结束重复以上步骤
  • 若无取出线程,且队列不为空,则唤配所有其它awai()线程
  • 解锁
public E take() throws InterruptedException {
    final ReentrantLock lock = this.lock;
    lock.lockInterruptibly();
    try {
        for (;;) {
            E first = q.peek();
            if (first == null)
                available.await();
            else {
                long delay = first.getDelay(NANOSECONDS);
                if (delay <= 0L)
                    return q.poll();
                // first = null 解决高并发情况下某一线程a延迟等待出队,而其它线程因leader!=null而available.await()等待,因线程a出取first而其它线程first一直不为空,导致JVM无法回收导致内存泄漏问题
                first = null;
                if (leader != null)
                    available.await();
                else {
                    // leader为空,则设置当前线程为取元素线程
                    Thread thisThread = Thread.currentThread();
                    leader = thisThread;
                    try {
                        // 延迟等待取出元素
                        available.awaitNanos(delay);
                    } finally {
                        // 延迟等待结束之后,还原现场
                        if (leader == thisThread)
                            leader = null;
                    }
                }
            }
        }
    } finally {
        if (leader == null && q.peek() != null)
            // 无正在取元素线程,且队列不为空,唤醒await的线程
            available.signal();
        // 释放锁
        lock.unlock();
    }
}
public E poll() {
    final Object[] es;
    final E result;
    if ((result = (E) ((es = queue)[0])) != null) {
        modCount++;
        final int n;
        final E x = (E) es[(n = --size)];
        es[n] = null;
        if (n > 0) {
            final Comparator<? super E> cmp;
            if ((cmp = comparator) == null)
                siftDownComparable(0, x, es, n);
            else
                siftDownUsingComparator(0, x, es, n, cmp);
        }
    }
    return result;
}

image.gif

4.3 扩容原理

  • 默认队列大小为11,扩容最大大小为Integer.MAX_VALUE
  • 扩容时机:元素个数 >= 队列的大小
  • 扩容规则:
  • 队列大小 < 64,则新队列大小 = (旧队列大小 + 1) * 2
  • 队列大小 >= 64,则新队列大小 = 旧队列大小 + 旧队列大小 / 2
  • 当旧容量大于Integer.MAX_VALUE - 8时,新容量值=旧容量 + 1(下面看源码说明)
  • 当超过Ineter.MAX_VALUE时,报OutOfMemoryError错误
  • 创建新容量数组队列,原数组队列数据复制到新数组队列中
private void grow(int minCapacity) {
    int oldCapacity = queue.length;
    // 当旧容量大小小于64,新容量 = 旧容量 + (旧容量 + 2)
    // 当旧容量大小大于63,新容量 = 旧容量 + (旧容量 / 2)
    // 当旧容量大于Integer.MAX_VALUE - 8时,走hugeLength(int oldLength, int minGrowth)逻辑
    // minCapacity = (i = size) + 1 (即oldCapacity+1) - oldCapacity = 1
    int newCapacity = ArraysSupport.newLength(oldCapacity,
            minCapacity - oldCapacity, /* minimum growth */
            oldCapacity < 64 ? oldCapacity + 2 : oldCapacity >> 1
            /* preferred growth */);
    queue = Arrays.copyOf(queue, newCapacity);
}
public static int newLength(int oldLength, int minGrowth, int prefGrowth) {
    // preconditions not checked because of inlining
    // assert oldLength >= 0
    // assert minGrowth > 0
    int prefLength = oldLength + Math.max(minGrowth, prefGrowth); // might overflow
    if (0 < prefLength && prefLength <= SOFT_MAX_ARRAY_LENGTH) {
        return prefLength;
    } else {
        // put code cold in a separate method
        return hugeLength(oldLength, minGrowth);
    }
}
private static int hugeLength(int oldLength, int minGrowth) {
    // 当oldLength > Integer.MAX_VALUE - 8时
    // minLength = oldLength + 1
    // 当minLength < Integer.MAX_VALUE,此时minLength > SOFT_MAX_ARRAY_LENGTH(Integer.MAX_VALUE - 8)返回 minLength
    // 否则抛OutOfMemoryError错误
    int minLength = oldLength + minGrowth;
    if (minLength < 0) { // overflow
        throw new OutOfMemoryError(
                "Required array length " + oldLength + " + " + minGrowth + " is too large");
    } else if (minLength <= SOFT_MAX_ARRAY_LENGTH) {
        return SOFT_MAX_ARRAY_LENGTH;
    } else {
        return minLength;
    }
}

image.gif

五、作用及使用场景

  • 下单:如唯品会,下单30分钟之内不支付自动取消
  • 试课课程:试课结束前15分钟通知老师
  • 空闲连接延迟自动关闭
  • 缓存:超过时间自动清除
  • 超时处理、业务办理排队叫号、插队和枪购活动等



相关文章
|
1天前
|
监控 NoSQL Java
java云MES 系统源码Java+ springboot+ mysql 一款基于云计算技术的企业级生产管理系统
MES系统是生产企业对制造执行系统实施的重点在智能制造执行管理领域,而MES系统特点中的可伸缩、信息精确、开放、承接、安全等也传递出:MES在此管理领域中无可替代的“王者之尊”。MES制造执行系统特点集可伸缩性、精确性、开放性、承接性、经济性与安全性于一体,帮助企业解决生产中遇到的实际问题,降低运营成本,快速适应企业不断的制造执行管理需求,使得企业已有基础设施与一切可用资源实现高度集成,提升企业投资的有效性。
28 5
|
3天前
|
Java
深入理解Java并发编程:线程池的应用与优化
【5月更文挑战第18天】本文将深入探讨Java并发编程中的重要概念——线程池。我们将了解线程池的基本概念,应用场景,以及如何优化线程池的性能。通过实例分析,我们将看到线程池如何提高系统性能,减少资源消耗,并提高系统的响应速度。
13 5
|
3天前
|
监控 安全 NoSQL
采用java+springboot+vue.js+uniapp开发的一整套云MES系统源码 MES制造管理系统源码
MES系统是一套具备实时管理能力,建立一个全面的、集成的、稳定的制造物流质量控制体系;对生产线、工艺、人员、品质、效率等多方位的监控、分析、改进,满足精细化、透明化、自动化、实时化、数据化、一体化管理,实现企业柔性化制造管理。
25 3
|
3天前
|
存储 Java
【Java】实现一个简单的线程池
,如果被消耗完了就说明在规定时间内获取不到任务,直接return结束线程。
11 0
|
4天前
|
存储 Java
Java基础复习(DayThree):字符串基础与StringBuffer、StringBuilder源码研究
Java基础复习(DayThree):字符串基础与StringBuffer、StringBuilder源码研究
Java基础复习(DayThree):字符串基础与StringBuffer、StringBuilder源码研究
|
4天前
|
数据采集 监控 安全
java数字工厂MES系统全套源码Java+idea+springboot专业为企业提供智能制造MES解决方案
"MES" 指的是制造执行系统(Manufacturing Execution System)。MES在制造业中扮演着至关重要的角色,它是位于企业资源计划(ERP)系统和车间控制系统之间的系统,用于实时收集、管理、分析和报告与制造过程相关的数据。
13 0
|
4天前
|
移动开发 监控 供应链
JAVA智慧工厂制造生产管理MES系统,全套源码,多端展示(app、小程序、H5、台后管理端)
一开始接触MES系统,很多人会和博主一样,对MES细节的应用不了解,这样很正常,因为MES系统相对于其他系统来讲应用比较多!
16 1
JAVA智慧工厂制造生产管理MES系统,全套源码,多端展示(app、小程序、H5、台后管理端)
|
5天前
|
NoSQL 算法 Java
【redis源码学习】持久化机制,java程序员面试算法宝典pdf
【redis源码学习】持久化机制,java程序员面试算法宝典pdf
|
5天前
|
Java 数据库连接 Spring
K8S+Docker理论与实践深度集成java面试jvm原理
K8S+Docker理论与实践深度集成java面试jvm原理
|
5天前
|
存储 运维 Java
java云his系统源码一站式诊所SaaS系统Java版云HIS系统 八大特点
HIS系统采用面向技术架构的分析与设计方法,应用多层次应用体系架构设计,运用基于构件技术的系统搭建模式与基于组件模式的系统内核结构。通过建立统一接口标准,实现数据交换和集成共享,通过统一身份认证和授权控制,实现业务集成、界面集成。
29 1