基于深度学习的人员指纹身份识别算法matlab仿真

简介: 这是一个关于使用深度学习进行指纹识别的算法概述。在matlab2022a环境下,通过预处理指纹图像(灰度化、二值化等)并利用卷积神经网络(CNN)提取特征。CNN架构包含卷积、池化、归一化和全连接层。特征向量通过余弦相似度计算匹配,训练时采用triplet loss优化。部分核心代码展示了加载预训练模型进行测试集分类预测并计算准确率的过程。

1.算法运行效果图预览

1.jpeg
2.jpeg
3.jpeg
4.jpeg
5.jpeg

2.算法运行软件版本
matlab2022a

3.算法理论概述
指纹识别技术是一种生物特征识别技术,它通过分析人类手指末端皮肤表面的纹路特征来进行身份认证。深度学习是机器学习的一个分支,特别适用于处理大规模高维数据,并在图像识别、语音识别等领域取得了显著成果。

3.1 指纹图像预处理与特征提取
首先,指纹图像需要经过一系列预处理步骤,包括灰度化、二值化、细化、去噪声等,以得到清晰的指纹脊线图。然后,传统方法中通常使用 minutiae 特征(如端点、分叉点)作为关键特征进行提取。而在深度学习框架下,神经网络能够直接从原始或预处理后的指纹图像中自动生成高级抽象特征:

image.png

3.2 卷积神经网络架构
一个典型的用于指纹识别的深度学习模型可能包含多个卷积层(Convolutional Layer)、池化层(Pooling Layer)、归一化层(Normalization Layer)以及全连接层(Fully Connected Layer)。卷积层通过对图像进行滤波操作来提取局部特征:

image.png

3.3 特征编码与匹配
深度学习指纹识别的核心在于利用网络自动学习到的特征进行身份比对。网络的最后几层通常会形成一个紧凑且可比对的特征向量。对于两个指纹图像,其对应的特征向量可以计算相似度得分,如余弦相似度:

image.png

3.4 损失函数与训练
为了训练这样的网络,通常会选择一种适合监督学习任务的损失函数,例如 triplet loss 或者交叉熵损失。对于一对正样本(同一人的不同指纹)和负样本(不同人的指纹),triplet loss 可以表述为:

image.png

    通过梯度下降或其他优化算法调整网络参数θ ,使得相同个体的指纹特征尽可能接近,而不同个体的指纹特征尽可能远离。

4.部分核心程序

clear;
close all;
warning off;
addpath(genpath(pwd));
rng('default')
load gnet.mat% 载入预训练的GoogLeNet模型

for ij = 1:15
Dataset=[];
% 创建图像数据存储对象,包括图像文件夹,标签等信息
Dataset         = imageDatastore(['dataset\man',num2str(ij),'\'], 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
Dataset.ReadFcn = @(loc)imresize(imread(loc),[224,224]);% 设置 im 的读取函数,将读取的图像进行缩放,大小为 [224,224]

% 对测试集进行分类预测
[Predicted_Label, Probability] = classify(net, Dataset);
% 计算分类准确率
accuracy = mean(Predicted_Label == Dataset.Labels);
accuracy
figure

for i = 1:8
    subplot(2,4,i)
    I = readimage(Dataset, i);% 从测试数据集中读取图像
    imshow(I)% 预测的标签
    label = Predicted_Label(i);

    title(['人员信息:',label]);
end


end
相关文章
|
2天前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
3天前
|
存储 算法 数据可视化
基于harris角点和RANSAC算法的图像拼接matlab仿真
本文介绍了使用MATLAB2022a进行图像拼接的流程,涉及Harris角点检测和RANSAC算法。Harris角点检测寻找图像中局部曲率变化显著的点,RANSAC则用于排除噪声和异常点,找到最佳匹配。核心程序包括自定义的Harris角点计算函数,RANSAC参数设置,以及匹配点的可视化和仿射变换矩阵计算,最终生成全景图像。
|
3天前
|
算法 Serverless
m基于遗传优化的LDPC码NMS译码算法最优归一化参数计算和误码率matlab仿真
MATLAB 2022a仿真实现了遗传优化的归一化最小和(NMS)译码算法,应用于低密度奇偶校验(LDPC)码。结果显示了遗传优化的迭代过程和误码率对比。遗传算法通过选择、交叉和变异操作寻找最佳归一化因子,以提升NMS译码性能。核心程序包括迭代优化、目标函数计算及性能绘图。最终,展示了SNR与误码率的关系,并保存了关键数据。
12 1
|
3天前
|
机器学习/深度学习 边缘计算 算法
深度学习在图像识别中的应用与挑战
【5月更文挑战第9天】 随着人工智能技术的迅猛发展,深度学习已成为推动计算机视觉领域进步的关键力量。尤其是在图像识别任务中,深度神经网络通过模拟人脑的机制,显著提升了系统的准确率和鲁棒性。然而,尽管取得了显著成就,深度学习在图像识别应用中仍面临数据偏差、模型泛化能力不足以及计算资源密集等挑战。本文将探讨深度学习在图像识别领域的最新进展,分析其面临的主要技术和实践难题,并展望可能的解决方案。
|
19小时前
|
机器学习/深度学习 监控 自动驾驶
深度学习在图像识别中的应用与挑战
【5月更文挑战第12天】 随着计算机视觉和人工智能技术的迅猛发展,深度学习已成为图像识别领域的核心技术。本文将探讨深度学习在图像识别中的应用,包括卷积神经网络(CNN)的基本原理、关键技术及其在不同领域中的应用案例。同时,我们将分析当前面临的主要挑战,如数据集偏差、模型泛化能力和计算资源要求,并提出可能的解决方案。通过综合评述,旨在为读者提供一个关于深度学习在图像识别中应用的全面视角。
|
19小时前
|
机器学习/深度学习 数据采集 监控
基于深度学习的图像识别技术在智能监控系统中的应用
【5月更文挑战第12天】 随着人工智能技术的迅猛发展,深度学习在图像处理领域已经取得了显著的成就。尤其是在图像识别任务中,卷积神经网络(CNN)等先进模型的应用极大提高了识别精度与效率。本文旨在探讨基于深度学习的图像识别技术如何被集成到智能监控系统中,以增强其自动检测和响应异常事件的能力。通过分析现有文献和最新研究成果,文章将详细阐述相关技术原理、系统架构、以及在实际场景中的应用效果,并讨论了面临的主要挑战和未来的发展方向。
|
22小时前
|
机器学习/深度学习 边缘计算 人工智能
深度学习在图像识别中的应用与挑战
【5月更文挑战第12天】 随着人工智能的迅速发展,深度学习技术在图像识别领域取得了显著的进步。本文旨在探讨深度学习模型如何有效地解决图像识别任务,并分析当前面临的主要挑战。文中将详细介绍卷积神经网络(CNN)的基础结构及其在图像分类、目标检测和语义分割中的应用。同时,将讨论数据增强、迁移学习、对抗性网络等优化策略。此外,本文也将指出模型泛化能力不足、计算资源消耗大、对小样本学习的挑战等问题,并提供可能的解决方案。
|
23小时前
|
机器学习/深度学习 传感器 人工智能
基于深度学习的图像识别技术在自动驾驶系统中的应用
【5月更文挑战第12天】 随着人工智能技术的飞速发展,深度学习已成为推动多个科技领域前进的关键力量。特别是在图像处理和识别方面,深度学习模型已经展现出了超越传统算法的性能。本文将探讨一种基于深度卷积神经网络(CNN)的图像识别技术,并分析其在自动驾驶系统中的应用。我们将重点介绍该技术如何提高自动驾驶汽车对周围环境的感知能力,以及它在未来交通生态中的潜在影响。
|
1天前
|
机器学习/深度学习 监控 算法
深度学习在图像识别中的应用与挑战
【5月更文挑战第12天】 随着人工智能技术的飞速发展,深度学习已成为推动计算机视觉领域进步的核心技术之一。特别是在图像识别任务中,深度神经网络通过学习海量数据中的抽象特征,显著提升了识别的准确性和效率。然而,尽管取得了显著进展,深度学习在图像识别应用中仍面临一系列挑战,包括但不限于数据集偏差、模型泛化能力、计算资源消耗以及对抗性攻击的脆弱性。本文将深入探讨深度学习技术在图像识别领域的应用现状,分析存在的挑战,并对未来发展趋势进行展望。
14 9
|
2天前
|
机器学习/深度学习 存储 边缘计算
深度学习在图像识别中的应用与挑战
【5月更文挑战第11天】 随着计算机视觉技术的飞速发展,深度学习已成为推动图像识别领域进步的核心动力。本文将探讨深度学习在图像识别中的应用,并分析当前面临的主要挑战。通过梳理卷积神经网络(CNN)的发展历程、关键算法及其在不同场景下的应用案例,本文揭示了深度学习技术如何有效提升图像识别的准确性与效率。同时,针对数据偏差、模型泛化能力、计算资源限制等问题,文中提出了相应的解决策略和未来发展方向。

热门文章

最新文章