YOLOv8改进 | 2023 | Deformable-LKA可变形大核注意力(涨点幅度超高)

简介: YOLOv8改进 | 2023 | Deformable-LKA可变形大核注意力(涨点幅度超高)

一、本文介绍

本文给大家带来的改进内容是Deformable-LKA(可变形大核注意力)。Deformable-LKA结合了大卷积核的广阔感受野和可变形卷积的灵活性,有效地处理复杂的视觉信息。这一机制通过动态调整卷积核的形状和大小来适应不同的图像特征,提高了模型对目标形状和尺寸的适应性。在YOLOv8中,Deformable-LKA可以被用于提升对小目标和不规则形状目标的检测能力特别是在复杂背景或不同光照条件下。我进行了简单的实验,这一改进显著提高了模型mAP(提高了大概0.8左右)。Deformable-LKA,引入可以将其用在C2f和检测头中进行改进估计效果会更高,所以非常推荐大家使用。

image.png

推荐指数:⭐⭐⭐⭐⭐

专栏目录:YOLOv8改进有效系列目录 | 包含卷积、主干、检测头、注意力机制、Neck上百种创新机制

专栏回顾:YOLOv8改进系列专栏——本专栏持续复习各种顶会内容——科研必备

二、Deformable-LKA机制原理

image.png

2.1 Deformable-LKA的基本原理

Deformable Large Kernel Attention (D-LKA) 的基本原理是结合了大卷积核和可变形卷积的注意力机制,通过采用大卷积核来模拟类似自我关注的感受野,同时避免了传统自我关注机制的高计算成本。此外,D-LKA通过可变形卷积来灵活调整采样网格,使得模型能够更好地适应不同的数据模式。可以将其分为以下几点:

1. 大卷积核: D-LKA 使用大卷积核来捕捉图像的广泛上下文信息,模仿自我关注机制的感受野。

2. 可变形卷积: 结合可变形卷积技术,允许模型的采样网格根据图像特征灵活变形,适应不同的数据模式。

3. 2D和3D适应性: D-LKA的2D和3D版本,使其在处理不同深度的数据时表现出色。

下面我来分别讲解这三种主要的改进机制->

2.2 大卷积核

大卷积核(Large Kernel)是一种用于捕捉图像中的广泛上下文信息的机制。它模仿自注意力(self-attention)机制的感受野,但是使用更少的参数和计算量。通过使用深度可分离的卷积(depth-wise convolution)深度可分离的带扩张的卷积(depth-wise dilated convolution),可以有效地构造大卷积核。这种方法允许网络在较大的感受野内学习特征,同时通过减少参数数量来降低计算复杂度。在Deformable LKA中,大卷积核与可变形卷积结合使用,进一步增加了模型对复杂图像模式的适应性。

image.png

上图为变形大核注意力(Deformable Large Kernel Attention, D-LKA)模块的架构。从图中可以看出,该模块由多个卷积层组成,包括:

1. 标准的2D卷积(Conv2D)。

2. 带有偏移量的变形卷积(Deformable Convolution, Deform-DW Conv2D),允许网络根据输入特征自适应地调整其感受野。

3. 偏移场(Offsets Field)的计算,它是由一个标准卷积层生成,用于指导变形卷积层如何调整其采样位置。

4. 激活函数GELU,增加非线性。

2.3 可变形卷积

可变形卷积(Deformable Convolution)被用来增强模型对医学图像中的不规则形状和大小的捕捉能力。可变形卷积通过添加额外的偏移量来调整标准卷积的采样位置,从而允许卷积核动态地适应图像的内容。这样的机制使得卷积层能够更加灵活地捕捉到各种形态的结构,特别是在医学图像中常见的不规则和可变形的器官。通过学习图像特征本身来确定这些偏移量,可变形卷积能够提供一种自适应的内核形状,这有助于提升分割的精确性和边缘定义。

2.4 2D和3D适应性

2D和3D适应性指的是Deformable Large Kernel Attention(D-LKA)技术应用于不同维度数据的能力2D D-LKA专为处理二维图像数据设计,适用于常见的医学成像方法,如X射线或MRI中的单层切片。而3D D-LKA则扩展了这种技术,使其能够处理三维数据集,充分利用体积图像数据中的空间上下文信息。3D版本特别擅长于交叉深度数据理解,即能够在多个层面上分析和识别图像特征,这对于体积重建和更复杂的医学成像任务非常有用。

image.png

上图展示了3D和2D Deformable Large Kernel Attention(D-LKA)模型的网络架构。左侧是3D D-LKA模型,右侧是2D D-LKA模型。

1. 3D D-LKA模型(左侧):包含多个3D D-LKA块,这些块在下采样和上采样之间交替,用于深度特征学习和分辨率恢复。

2. 2D D-LKA模型(右侧):利用MaxViT块作为编码器组件,并在不同的分辨率级别上使用2D D-LKA块,通过扩展(Patch Expanding)和D-LKA注意力机制进行特征学习。

目录
相关文章
|
机器学习/深度学习 计算机视觉 网络架构
改进YOLOv8:添加CBAM注意力机制(涨点明显)
改进YOLOv8:添加CBAM注意力机制(涨点明显)
7244 1
|
存储 数据采集 传感器
一文多图搞懂KITTI数据集下载及解析
一文多图搞懂KITTI数据集下载及解析
14910 3
一文多图搞懂KITTI数据集下载及解析
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进】D-LKA Attention:可变形大核注意力 (论文笔记+引入代码)
YOLO目标检测专栏探讨了Transformer在医学图像分割的进展,但计算需求限制了模型的深度和分辨率。为此,提出了可变形大核注意力(D-LKA Attention),它使用大卷积核捕捉上下文信息,通过可变形卷积适应数据模式变化。D-LKA Net结合2D和3D版本的D-LKA Attention,提升了医学分割性能。YOLOv8引入了可变形卷积层以增强目标检测的准确性。相关代码和任务配置可在作者博客找到。
|
8月前
|
机器学习/深度学习 存储 TensorFlow
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
1816 11
YOLOv11改进策略【Head】| (独家改进)轻量化检测头:利用 EfficientNet 中的移动倒置瓶颈模块 MBConv 改进检测头
|
机器学习/深度学习 自然语言处理 计算机视觉
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
【YOLOv8改进 - Backbone主干】VanillaNet:极简的神经网络,利用VanillaBlock降低YOLOV8参数
|
11月前
|
机器学习/深度学习 编解码 Java
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
《YOLO11目标检测创新改进与实战案例》专栏已更新100+篇文章,涵盖注意力机制、卷积优化、检测头创新、损失与IOU优化、轻量级网络设计等多方面内容。每周更新3-10篇,提供详细代码和实战案例,帮助您掌握最新研究和实用技巧。[专栏链接](https://blog.csdn.net/shangyanaf/category_12810477.html)
YOLO11创新改进系列:卷积,主干 注意力,C3k2融合,检测头等创新机制(已更新100+)
|
机器学习/深度学习 算法 vr&ar
YOLOv8有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例
这个摘要主要涵盖了一个关于YOLO目标检测的深度学习专栏的内容概览。该专栏专注于YOLO算法的历史、前沿研究和实战应用,提供了一系列的文章,详细讲解了YOLO的改进方法,包括卷积优化、损失函数创新、注意力机制、网络结构和主干网络的更新,以及针对不同场景如红外成像、小目标检测等的应用。此外,还提供了每周多次的更新频率以保持内容的时效性,并指导读者进行论文写作和项目实现,包括具体的代码示例和实战项目,如行人检测、对象分割、姿态估计等。该专栏还涉及到面试准备和实习就业指导,帮助读者提升在图像算法领域的专业技能。
|
机器学习/深度学习 编解码 测试技术
【YOLOv8改进-SPPF】 Focal Modulation :使用焦点调制模块替代SPPF
YOLOv8专栏介绍了FocalNets,一种取代自注意力的新型模块,提升模型在图像分类、检测和分割任务中的性能。Focal Modulation包括局部聚焦、全局调制和多尺度处理,通过融合CNN和自注意力优点。代码展示了FocalModulation模块的实现。论文和代码已开源。在多个基准测试中,FocalNets超越了Swin等先进模型。
|
机器学习/深度学习 编解码 计算机视觉
【YOLOv8改进 - 特征融合NECK】 GIRAFFEDET之GFPN :广义特征金字塔网络,高效地融合多尺度特征
YOLOv8专栏探讨了目标检测的创新改进,提出了GiraffeDet,一种轻量级主干和深度颈部模块结合的高效检测网络。GiraffeDet使用S2D-chain和GFPN,优化多尺度信息交换,提升检测性能。代码和论文可在相关链接找到。GFPN通过跳跃和跨尺度连接增强信息融合。文章还展示了核心组件如SPPV4、Focus和CSPStage的代码实现。
|
机器学习/深度学习 算法 算法框架/工具