python实现基于长短期记忆网络LSTM模型预测茅台股票价格趋势

简介: python实现基于长短期记忆网络LSTM模型预测茅台股票价格趋势

前言


       随着金融数据的不断增长和复杂化,传统的统计方法和机器学习技术面临着挑战。深度学习算法通过多层神经网络的构建,以及大规模数据的训练和优化,可以从数据中提取更加丰富、高级的特征表示,从而提供更准确、更稳定的预测和决策能力。


       在金融领域,深度学习算法已经被广泛应用于多个关键任务。首先,风险评估是金融机构必须面对的重要问题之一。深度学习算法可以通过学习大规模的历史数据,识别隐藏在数据中的潜在风险因素,并预测未来的风险情况。其次,欺诈检测是金融行业必不可少的任务。深度学习算法可以通过对交易模式和用户行为的建模,发现异常模式和欺诈行为,提高金融机构对欺诈的识别和预防能力。


       此外,深度学习算法在金融交易方面也发挥着重要作用。通过对市场数据、历史交易数据和其他相关信息进行建模和预测,深度学习算法可以帮助交易员做出更明智的交易决策,并提高交易策略的效果和收益。


       然而,深度学习算法在金融领域的应用也面临着一些挑战和限制。首先,数据的质量和可靠性对算法的性能至关重要。其次,算法的可解释性和可信度也是金融监管和风控部门关注的重点。因此,在深度学习算法的发展和应用过程中,仍然需要进一步探索和研究,以确保其在金融领域的可靠性和稳定性。


       本文将简要介绍使用长短期记忆网络(LSTM)模型来处理时间序列预测问题,使用茅台股票数据继续案例演示,以便读者能在代码基础上结合自己的数据集和应用场景进行拓展。


长短期记忆网络


       长短期记忆网络 (Long Short-Term Memory, LSTM)是一种递归神经网络 (RNN) 的类型,专门用于处理序列预测问题。与传统的RNN不同,LSTM可以有效地捕捉时间序列数据中的长期依赖关系,因此在金融领域非常有用。


       这些网络包含能够在长序列中存储信息的记忆单元,使其能够克服传统RNN中的梯度消失问题。LSTM能够记住和利用过去的信息,使其适用于分析金融时间序列数据,如股票价格或经济指标。


       应用案例:LSTM在金融领域有多种应用,例如股票价格预测、算法交易、投资组合优化和欺诈检测。它们还可以分析经济指标以预测市场趋势,帮助投资者做出更明智的决策。


这里是一个使用Python实现LSTM的示例代码:

from keras.models import Sequential
from keras.layers import LSTM, Dense
# define the model
model = Sequential()
model.add(LSTM(50, input_shape=(timesteps, feature_dim)))
model.add(Dense(1, activation='sigmoid'))
# compile the model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit the model to the training data
model.fit(X_train, y_train, batch_size=32, epochs=10, validation_data=(X_test, y_test))


上面代码是简化了,需要带入数据变量才能运行。下面我们将使用茅台股票数据进行详细的操作演示,仅供大家参考学习。


实战案例


1.实验环境


Python3.9


代码编辑工具:jupyter notebook


2.读取数据

from keras.models import Sequential
from keras.layers import LSTM, Dense
from sklearn.preprocessing import MinMaxScaler
import pandas as pd
import numpy as np
# 读取茅台股票数据并将date日期作为索引
data = pd.read_csv('maotai_stock.csv',index_col='date')
data


3.准备训练数据


首先从原始数据集中提取出2022年之前的收盘价作为训练数据

# 提取训练数据
new_data = data['close'] # 我们预测的是收盘价,所以单独提取出close收盘价数据
train_data = new_data[:'2022']  # 将2022年之前的收盘价数据作为训练数据
train_prices = train_data.values.reshape(-1, 1)
train_prices


接着对训练数据做归一化处理

# 数据归一化
scaler = MinMaxScaler(feature_range=(0, 1))
train_scaled = scaler.fit_transform(train_prices)
train_scaled


最后创建我们的训练数据集

# 创建训练数据集
X_train = []
y_train = []
timesteps = 30  # 时间步长,可根据需求进行调整
for i in range(timesteps, len(train_scaled)):
    X_train.append(train_scaled[i - timesteps:i, 0])
    y_train.append(train_scaled[i, 0])
# 讲训练数据转为数组形式
X_train, y_train = np.array(X_train), np.array(y_train)
# 调整输入数据的维度
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1))
X_train


4.训练模型


构建LSTM模型并编译拟合

# 构建LSTM模型
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(X_train.shape[1], 1)))
model.add(LSTM(50))
model.add(Dense(1))
# 编译模型
model.compile(loss='mean_squared_error', optimizer='adam')
# 拟合模型
model.fit(X_train, y_train, epochs=50, batch_size=32)


5.模型预测


模型训练好后,我们需要准备测试数据进行模型测试

# 提取测试数据
test_data = new_data['2022':] # 将2022年之后的数据作为测试数据
test_prices = test_data.values.reshape(-1, 1)
# 数据归一化
test_scaled = scaler.transform(test_prices)
# 创建测试数据集
X_test = []
y_test = []
for i in range(timesteps, len(test_scaled)):
    X_test.append(test_scaled[i - timesteps:i, 0])
    y_test.append(test_scaled[i, 0])
# 将测试数据转为数组形式
X_test, y_test = np.array(X_test), np.array(y_test)
# 调整输入数据的维度
X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1))
X_test


使用模型对测试数据继续预测

# 使用模型进行预测
predicted_prices = model.predict(X_test)
predicted_prices


6.预测结果可视化


最后使用matplotlib将模型预测的结果与测试数据进行可视化对比,直观展现模型的预测效果。

# 预测结果可视化
import matplotlib.pyplot as plt
import seaborn as sns
sns.set(font='SimHei')
plt.rcParams['font.sans-serif'] = ['SimHei'] #解决中文显示
plt.rcParams['axes.unicode_minus'] = False   #解决符号无法显示
# 反归一化训练集和测试集的价格数据
train_prices_scaled = scaler.inverse_transform(train_scaled)
test_prices_scaled = scaler.inverse_transform(test_scaled)
# 反归一化预测结果
predicted_prices_scaled = scaler.inverse_transform(predicted_prices)
# 创建日期索引
test_dates = pd.to_datetime(test_data.index[timesteps:])
plt.figure(figsize=(15, 7))
plt.plot(test_dates, test_prices_scaled[timesteps:], label='茅台股票收盘价-测试数据')
plt.plot(test_dates, predicted_prices_scaled, label='LSTM预测收盘价格')
plt.legend()
plt.show()


从可视化结果可以看出,蓝色线是真实数据,橙色线是模型预测数据,整体趋势相差不大,说明模型效果还不错。

目录
相关文章
|
16天前
|
搜索推荐 程序员 调度
精通Python异步编程:利用Asyncio与Aiohttp构建高效网络应用
【10月更文挑战第5天】随着互联网技术的快速发展,用户对于网络应用的响应速度和服务质量提出了越来越高的要求。为了构建能够处理高并发请求、提供快速响应时间的应用程序,开发者们需要掌握高效的编程技术和框架。在Python语言中,`asyncio` 和 `aiohttp` 是两个非常强大的库,它们可以帮助我们编写出既简洁又高效的异步网络应用。
76 1
|
26天前
|
数据采集 存储 JavaScript
构建你的第一个Python网络爬虫
【9月更文挑战第34天】在数字信息泛滥的时代,快速有效地获取和处理数据成为一项重要技能。本文将引导读者通过Python编写一个简易的网络爬虫,实现自动化地从网页上抓取数据。我们将一步步走过代码的编写过程,并探讨如何避免常见陷阱。无论你是编程新手还是想扩展你的技术工具箱,这篇文章都将为你提供有价值的指导。
69 18
|
7天前
|
消息中间件 监控 网络协议
Python中的Socket魔法:如何利用socket模块构建强大的网络通信
本文介绍了Python的`socket`模块,讲解了其基本概念、语法和使用方法。通过简单的TCP服务器和客户端示例,展示了如何创建、绑定、监听、接受连接及发送/接收数据。进一步探讨了多用户聊天室的实现,并介绍了非阻塞IO和多路复用技术以提高并发处理能力。最后,讨论了`socket`模块在现代网络编程中的应用及其与其他通信方式的关系。
|
14天前
|
机器学习/深度学习 存储 自然语言处理
从理论到实践:如何使用长短期记忆网络(LSTM)改善自然语言处理任务
【10月更文挑战第7天】随着深度学习技术的发展,循环神经网络(RNNs)及其变体,特别是长短期记忆网络(LSTMs),已经成为处理序列数据的强大工具。在自然语言处理(NLP)领域,LSTM因其能够捕捉文本中的长期依赖关系而变得尤为重要。本文将介绍LSTM的基本原理,并通过具体的代码示例来展示如何在实际的NLP任务中应用LSTM。
38 4
|
12天前
|
机器学习/深度学习 人工智能 算法
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
玉米病害识别系统,本系统使用Python作为主要开发语言,通过收集了8种常见的玉米叶部病害图片数据集('矮花叶病', '健康', '灰斑病一般', '灰斑病严重', '锈病一般', '锈病严重', '叶斑病一般', '叶斑病严重'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。再使用Django搭建Web网页操作平台,实现用户上传一张玉米病害图片识别其名称。
29 0
【玉米病害识别】Python+卷积神经网络算法+人工智能+深度学习+计算机课设项目+TensorFlow+模型训练
|
18天前
|
运维 监控 网络安全
Python 在网络运维方面的自动化应用实例
Python 在网络运维方面的自动化应用实例
43 4
|
12天前
|
运维 安全 网络协议
Python 网络编程:端口检测与IP解析
本文介绍了使用Python进行网络编程的两个重要技能:检查端口状态和根据IP地址解析主机名。通过`socket`库实现端口扫描和主机名解析的功能,并提供了详细的示例代码。文章最后还展示了如何整合这两部分代码,实现一个简单的命令行端口扫描器,适用于网络故障排查和安全审计。
16 0
|
22天前
|
安全 网络协议 IDE
使用Python编写网络扫描程序
使用Python编写网络扫描程序
29 0
|
22天前
|
JSON API 开发者
深入解析Python网络编程与Web开发:urllib、requests和http模块的功能、用法及在构建现代网络应用中的关键作用
深入解析Python网络编程与Web开发:urllib、requests和http模块的功能、用法及在构建现代网络应用中的关键作用
13 0
|
22天前
|
网络协议 测试技术 网络安全
Python编程-Socket网络编程
Python编程-Socket网络编程
19 0