题目
给你一个二维整数数组 stockPrices
,其中 stockPrices[i] = [dayi, pricei]
表示股票在 dayi 的价格为 pricei 。折线图 是一个二维平面上的若干个点组成的图,横坐标表示日期,纵坐标表示价格,折线图由相邻的点连接而成。比方说下图是一个例子:
请你返回要表示一个折线图所需要的 最少线段数 。
示例 1:
输入:stockPrices = [[1,7],[2,6],[3,5],[4,4],[5,4],[6,3],[7,2],[8,1]] 输出:3 解释: 上图为输入对应的图,横坐标表示日期,纵坐标表示价格。 以下 3 个线段可以表示折线图: - 线段 1 (红色)从 (1,7) 到 (4,4) ,经过 (1,7) ,(2,6) ,(3,5) 和 (4,4) 。 - 线段 2 (蓝色)从 (4,4) 到 (5,4) 。 - 线段 3 (绿色)从 (5,4) 到 (8,1) ,经过 (5,4) ,(6,3) ,(7,2) 和 (8,1) 。 可以证明,无法用少于 3 条线段表示这个折线图。
示例 2:
输入:stockPrices = [[3,4],[1,2],[7,8],[2,3]] 输出:1 解释: 如上图所示,折线图可以用一条线段表示。
解题
方法一:判断斜率相等(转化成乘法)
将除法a[0]/b[0]==a[1]/b[1]转化为乘法,就可以避免精度问题,四舍五入。很有可能两个不同的斜率,但是四舍五入成相等了。
这道题其实就是计算这个折线有多少种斜率
(注意转换为乘法会溢出,因此要用uint64_t)
class Solution { public: bool compareVec(vector<int>& a,vector<int>& b){ return (uint64_t)a[0]*b[1]==(uint64_t)a[1]*b[0]; } int minimumLines(vector<vector<int>>& stockPrices) { int n=stockPrices.size(); vector<int> pre; int count=0; sort(stockPrices.begin(),stockPrices.end(),[](vector<int>&a,vector<int>&b){ return a[0]<b[0]; }); for(int i=1;i<n;i++){ vector<int> vec={stockPrices[i][0]-stockPrices[i-1][0],stockPrices[i][1]-stockPrices[i-1][1]}; if(i==1) count=1; else{ if(compareVec(pre,vec)) continue; else count++; } pre=vec; } return count; } };