leetcode-SQL-

简介: leetcode-SQL-

题目

题目链接

朋友关系列表: Friendship

+---------------+---------+
| Column Name   | Type    |
+---------------+---------+
| user1_id      | int     |
| user2_id      | int     |
+---------------+---------+
这张表的主键是 (user1_id, user2_id)。
这张表的每一行代表着 user1_id 和 user2_id 之间存在着朋友关系。

喜欢列表: Likes

+-------------+---------+
| Column Name | Type    |
+-------------+---------+
| user_id     | int     |
| page_id     | int     |
+-------------+---------+
这张表的主键是 (user_id, page_id)。
这张表的每一行代表着 user_id 喜欢 page_id。

写一段 SQL 向user_id = 1 的用户,推荐其朋友们喜欢的页面。不要推荐该用户已经喜欢的页面。

你返回的结果中不应当包含重复项。

返回结果的格式如下例所示。

示例 1:

输入:
Friendship table:
+----------+----------+
| user1_id | user2_id |
+----------+----------+
| 1        | 2        |
| 1        | 3        |
| 1        | 4        |
| 2        | 3        |
| 2        | 4        |
| 2        | 5        |
| 6        | 1        |
+----------+----------+
Likes table:
+---------+---------+
| user_id | page_id |
+---------+---------+
| 1       | 88      |
| 2       | 23      |
| 3       | 24      |
| 4       | 56      |
| 5       | 11      |
| 6       | 33      |
| 2       | 77      |
| 3       | 77      |
| 6       | 88      |
+---------+---------+
输出:
+------------------+
| recommended_page |
+------------------+
| 23               |
| 24               |
| 56               |
| 33               |
| 77               |
+------------------+
解释:
用户1 同 用户2, 3, 4, 6 是朋友关系。
推荐页面为: 页面23 来自于 用户2, 页面24 来自于 用户3, 页面56 来自于 用户3 以及 页面33 来自于 用户6。
页面77 同时被 用户2 和 用户3 推荐。
页面88 没有被推荐,因为 用户1 已经喜欢了它。

解题

1.找到user_id=1的亲密朋友(通过union all)

2.找到亲密朋友爱看的书

3.根据亲密朋友爱看的书和自己看过的书,获得推荐的书

select distinct page_id as recommended_page
from Likes
where user_id in(
    select user1_id as user_id from Friendship where user2_id=1
    union all
    select user2_id as user_id from Friendship where user1_id=1
)and page_id not in(
    select page_id from Likes where user_id=1
)

或者可以将union all替换成case when…then…语句

select distinct page_id as recommended_page
from Likes
where user_id in(
    select 
        case
        when user1_id=1 then user2_id
        when user2_id=1 then user1_id
        end
    from Friendship
    where user1_id=1 or user2_id=1
)and page_id not in(
    select page_id from Likes where user_id=1
);
相关文章
|
1天前
|
弹性计算 关系型数据库 微服务
基于 Docker 与 Kubernetes(K3s)的微服务:阿里云生产环境扩容实践
在微服务架构中,如何实现“稳定扩容”与“成本可控”是企业面临的核心挑战。本文结合 Python FastAPI 微服务实战,详解如何基于阿里云基础设施,利用 Docker 封装服务、K3s 实现容器编排,构建生产级微服务架构。内容涵盖容器构建、集群部署、自动扩缩容、可观测性等关键环节,适配阿里云资源特性与服务生态,助力企业打造低成本、高可靠、易扩展的微服务解决方案。
1064 0
|
10天前
|
人工智能 运维 安全
|
1天前
|
弹性计算 Kubernetes jenkins
如何在 ECS/EKS 集群中有效使用 Jenkins
本文探讨了如何将 Jenkins 与 AWS ECS 和 EKS 集群集成,以构建高效、灵活且具备自动扩缩容能力的 CI/CD 流水线,提升软件交付效率并优化资源成本。
251 0
|
8天前
|
人工智能 异构计算
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
敬请锁定《C位面对面》,洞察通用计算如何在AI时代持续赋能企业创新,助力业务发展!
|
9天前
|
人工智能 测试技术 API
智能体(AI Agent)搭建全攻略:从概念到实践的终极指南
在人工智能浪潮中,智能体(AI Agent)正成为变革性技术。它们具备自主决策、环境感知、任务执行等能力,广泛应用于日常任务与商业流程。本文详解智能体概念、架构及七步搭建指南,助你打造专属智能体,迎接智能自动化新时代。
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
B站开源IndexTTS2,用极致表现力颠覆听觉体验
在语音合成技术不断演进的背景下,早期版本的IndexTTS虽然在多场景应用中展现出良好的表现,但在情感表达的细腻度与时长控制的精准性方面仍存在提升空间。为了解决这些问题,并进一步推动零样本语音合成在实际场景中的落地能力,B站语音团队对模型架构与训练策略进行了深度优化,推出了全新一代语音合成模型——IndexTTS2 。
740 23